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Preface

Networked control systems (NCSs) are control systems whose control links are
closed via some form of communication networks. It has become a useful control
system model in recent years due to the fast development of the embedded com-
putational devices and the communication technology. These developments have
made it possible that a large number of sensors, actuators and controllers can be
interconnected over the communication network to interact with the physical
environment. This remote and distributed control system structure is the basis of a
great many of future applications in information technology, including Internet of
Things, cyber-physical systems, smart home.

NCSs can contain a large number of control devices interconnected, and data is
exchanged through communication networks which inevitably introduces com-
munication constraints to the control system, e.g. network-induced delay, data
packet dropout, data packet disorder, data rate constraint. These communication
constraints in NCSs present great challenges for conventional control theory.

The study of NCSs therefore requires multi-field knowledge, and consequently
the integration of control, communication and computations, i.e. the “co-design”
approach. In this book, we report a class of co-design approach to NCSs—the
“packet-based control” approach—which is achieved by taking advantage of the
packet-based transmission of the communication network in NCSs, one primary
feature distinct from conventional control systems.

For completeness, an introductory chapter is first included which provides a brief
tutorial of NCSs, and then the remainder of the book is organized into three parts,
covering the design, analysis and extension of the packet-based control approach,
respectively.

These studies have shown that the packet-based control approach is both unified
and flexible: on the one hand, the approach can stand on its own as a novel class of
design and analysis methods different from existing ones; on the other, existing
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control methods can also be fitted into the packet-based control approach for a
better system performance. A unique co-design framework, i.e. packet-based net-
worked control systems, is thus finally constructed.

We hope the reader will find this book useful for their understanding of and
research on networked control systems.

Hangzhou, China Yun-Bo Zhao
April 2017

vi Preface

ybzhao@zjut.edu.cn



Acknowledgements

The following financial supports are greatly appreciated: the National Natural
Science Foundation of China under Grant 61673350, the Thousand Talents Plan of
China and Zhejiang, the Major Projects Foundation of Zhejiang under Grant
2017C03060, and the Monograph and Postgraduate Textbook Foundation of
Zhejiang University of Technology under grant 20160103.

vii

ybzhao@zjut.edu.cn



Contents

1 A Brief Tutorial of Networked Control Systems . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Communicational Characteristics of NCSs . . . . . . . . . . . . . . . . . 3

1.2.1 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Packet-Based Data Transmission . . . . . . . . . . . . . . . . . . 4
1.2.3 Limited Network Resources. . . . . . . . . . . . . . . . . . . . . . 7

1.3 The Research on Networked Control Systems . . . . . . . . . . . . . . 9
1.3.1 Control-Centred Research on NCSs. . . . . . . . . . . . . . . . 9
1.3.2 Co-Design for NCSs . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Part I Design

2 Packet-Based Control Design for Networked Control Systems . . . .. . . . 15
2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Packet-Based Control for NCSs . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Packet-Based Control for NCSs: A Unified Model . . . . 17
2.2.2 Design of the Packet-Based Control for NCSs . . . . . . . 18

2.3 Stability of Packet-Based NCSs . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 A Switched System Theory Approach. . . . . . . . . . . . . . 22
2.3.2 A Delay Dependent Analysis Approach . . . . . . . . . . . . 23

2.4 Controller Design: A GPC-Based Approach . . . . . . . . . . . . . . . . 25
2.5 Numerical and Experimental Examples. . . . . . . . . . . . . . . . . . . . 27
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Packet-Based Control for Networked Hammerstein Systems . . . . . . 33
3.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Packet-Based Control for Networked Hammerstein Systems . . . 35

3.2.1 Intermediate FCS (FCIS) . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 The Nonlinear Input Process . . . . . . . . . . . . . . . . . . . . . 38

ix

ybzhao@zjut.edu.cn



3.2.3 Packet-Based Control for Networked Hammerstein
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Stability Analysis of Packet-Based Networked Hammerstein
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Stability Criterion in Input-Output Description . . . . . . . 40
3.3.2 Stability Criterion in State-Space Description . . . . . . . . 42

3.4 Numerical and Experimental Examples. . . . . . . . . . . . . . . . . . . . 46
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Packet-Based Control for Networked Wiener Systems . . . . . . . . . . . 51
4.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Packet-Based Control for Networked Wiener Systems . . . . . . . . 52
4.3 Stability Analysis of Packet-Based Networked Wiener

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Observer Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2 Closed-Loop Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Numerical and Experimental Examples. . . . . . . . . . . . . . . . . . . . 57
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Packet-Based Networked Control Systems in
Continuous Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1 Packet-Based Control in Continuous Time . . . . . . . . . . . . . . . . . 61

5.1.1 Packet-Based Control for NCSs in
Continuous Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.2 A Novel Model for NCSs . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Stability and Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Part II Analysis

6 Stochastic Stabilization of Packet-Based Networked Control
Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.1 Stochastic Analysis of PBNCSs . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1.1 Stochastic Model of PBNCSs . . . . . . . . . . . . . . . . . . . . 78
6.1.2 Stochastic Stability and Stabilization . . . . . . . . . . . . . . . 80

6.2 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Stability of Networked Control Systems: A New Time Delay
Systems Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.1 The Novel Time Delay System Model for PBNCSs . . . . . . . . . . 87
7.2 Stability and Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

x Contents

ybzhao@zjut.edu.cn



8 Exploring the Different Delay Effects in Different Channels
in Networked Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2 Categorizing the Control Laws . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.2.1 Two General Categories of the Control Laws . . . . . . . . 101
8.2.2 The Delay-Dependent Control Laws . . . . . . . . . . . . . . . 102

8.3 When and How the Delay Effects in Different Channels Are
Different . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.3.1 When the Delay Effects Are Different: A Qualitative

Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.3.2 How the Delay Effects with (8.4a) and (8.4c) are

Different: A Quantitative Analysis. . . . . . . . . . . . . . . . . 103
8.3.3 A Brief Summary and Discussion . . . . . . . . . . . . . . . . . 108

8.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Part III Extension

9 Active Compensation for Data Packet Disorder in Networked
Control Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.1 Data Packet Disorder and Related Work. . . . . . . . . . . . . . . . . . . 117

9.1.1 Data Packet Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.2 Actively Compensating for Data Packet Disorder
in NCSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.3 Modeling and Further Discussion . . . . . . . . . . . . . . . . . . . . . . . . 122
9.3.1 A Unified Model for NCSs . . . . . . . . . . . . . . . . . . . . . . 122
9.3.2 Further Discussion: Reduced Communication

Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
9.4 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10 Error Bounded Sensing for Packet-Based Networked
Control Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.1 Error Bounded Sensing for PBNCSs . . . . . . . . . . . . . . . . . . . . . 127

10.1.1 Error Bounded Sensing in the Sensor-to-controller
Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

10.1.2 Packet-Based Control in the Controller-to-actuator
Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

10.1.3 The EBS Strategy for PBNCSs . . . . . . . . . . . . . . . . . . . 130
10.2 Stabilization and Further Discussion . . . . . . . . . . . . . . . . . . . . . . 132

10.2.1 Stabilization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
10.2.2 The Effects of the EBS Strategy . . . . . . . . . . . . . . . . . . 135

Contents xi

ybzhao@zjut.edu.cn



10.3 Numerical and Experimental Examples. . . . . . . . . . . . . . . . . . . . 138
10.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

11 Packet-Based Deadband Control for Networked
Control Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
11.1 Packet-Based Deadband Control for NCSs . . . . . . . . . . . . . . . . . 143
11.2 Stability and Stabilization of Packet-Based Deadband

Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
11.2.1 The Control Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
11.2.2 Stability and Stabilization . . . . . . . . . . . . . . . . . . . . . . . 148

11.3 Numerical and Experimental Examples. . . . . . . . . . . . . . . . . . . . 155
11.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

12 Packet-Based Control and Scheduling Co-Design for
Networked Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
12.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
12.2 Packet-Based Control for Subsystems. . . . . . . . . . . . . . . . . . . . . 162
12.3 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

12.3.1 Static Scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
12.3.2 Dynamic Feedback Scheduling . . . . . . . . . . . . . . . . . . . 167

12.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
12.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

xii Contents

ybzhao@zjut.edu.cn



Acronyms

CARIMA Controlled Auto Regressive Integrated Moving Average
CAS Control Action Selector
CTR Controller Transmission Rule
DCDD Different-Channel-Delay-Dependent
DCDI Different-Channel-Delay-Independent
DFS Dynamic Feedback Scheduling
EBS Error Bounded Sensing
FCIS Forward Control Increment Sequence
FCS Forward Control Sequence
FFG Fixed Feedback Gain
GPC Generalized Predictive Control
LGPC Linear Generalized Predictive Control
LQR Linear Quadratic Optimal
LTI Linear Time-Invariant
MPC Model Predictive Control
NCS(s) Networked Control System(s)
PBNCS(s) Packet-Based Networked Control System(s)
QoP Quality of Performance
RM Rate Monotonic
RHC Receding Horizon Control
STR Sensor Transmission Rule
SISO Single-Input-Single-Output
SSRTD Stability-guaranteed Supremum of Round Trip Delay
TCP Transmission Control Protocol
TDS(s) Time Delay System(s)
UDP User Datagram Protocol
VFG Varying Feedback Gain

xiii

ybzhao@zjut.edu.cn



Chapter 1
A Brief Tutorial of Networked Control
Systems

A brief tutorial of NCSs is provided in this introductory chapter. The tutorial first
introduces the unique characteristics of NCSs and then reviews the research in this
field. The former is explored from a perspective that emphasizes the differences
between NCSs and conventional control systems, and thus the role played by the
computation network in NCSs is extensively examined, including, e.g., the network
topology, the packet-based transmission and the limited communication resources,
etc. Among all these characteristics, the packet-based transmission will be high-
lighted as this is the basis of the so-called “packet-based control” for NCSs, the
principal theme of the book. The second part of the tutorial covers the state-of-the-
art research on NCSs. We particularly make the comparison between conventional
studies and the so-called “co-design” approach to NCSs, to which the packet-based
control approach belongs.

1.1 Introduction

“Networked control systems” refers to a general class of control systems whose
control loop is closed via some form of communication network [1–6]. Interest in
such a system configuration can date back to as early as 1980s’, when the so-called
“Integrated Communication and Control Networks” attracted much attention from
the control community [7]. From that time on, other alias such as “Network-based
Control Systems” and “Control over (through) Networks” have also been used to
describe the similar system configuration as NCSs but are not often used today
[8–13].

As indicated by its name, the most distinct feature of NCSs is the use of communi-
cation networks in the control loop [14, 15]. Earlier days havewitnessed the use of the
control-oriented communication networks such as the Control Area Network (CAN),
DeviceNet, etc., as the first choice of the communication networks in NCSs, the fast
development of the communication technology as well as the increasing needs of
large scale systems have now made the Internet or other forms of data networks an

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2018
Y.-B. Zhao et al., Packet-Based Control for Networked Control Systems,
DOI 10.1007/978-981-10-6250-6_1
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2 1 A Brief Tutorial of Networked Control Systems

attracting alternative. The Internet offers us the capability of building a large control
system at much lower cost, easier maintenances, with also the more flexible recon-
figuration capability. Built on the fundamental theoretical advances in NCSs, we
have seen various innovations such as the smart home, smart transportation, remote
surgery, Internet of Things, etc. in recent years [16–22].

The advantages brought by NCSs however do not come at no cost. A funda-
mental basis of conventional control systems is that the data exchanges among the
control components are lossless. In NCSs, the data have to be transmitted through
the communication network, and the nature of the Internet and other variations of
data networks means that perfect data exchanges among the control components is
essentially unavailable. The imperfect data translation in NCSs thus introduces the
so-called communication constraints to the control system, which include, e.g., the
network-induced delay (the delays occurred in transmitting the sensing and control
data), the data packet dropout (the data packet may be missing during transmission),
the time synchronization issue (different control components may work on different
clocks), and so on [23]. These communication constraint can greatly degrade the sys-
tem performance or even destabilize the system at certain conditions, while simple
extensions of conventional control approaches can not be obtained directly in a net-
worked control environment [24–29]. These difficulties thus pose great challenges
for the control and communication communities and considerable works have been
done to a better understanding and design of such systems at the boundary of control
theory and communication technology [30–32].

We provide a brief tutorial on NCSs in this introductory chapter. This consists of
two parts. We first give an extensive introduction of the communication networks in
NCSs, including its basic characteristics and more importantly its interactions with
the control system. Note that we focus on data networks such as the Internet but
not the control-oriented networks, simply because of the increasing use and more
complicated communication features of the former. We then survey the state-of-the-
art research on NCSs, from mainly the control perspective with also an emphasis on
the co-design approach which integrates both control and communication.

For simplicity in this tutorial we focus on a simple structure of NCSs. From a
general perspective of system structure, NCSs may contain two different structures
[33]: the “direct structure” in Fig. 1.1 and the “hierarchical structure” in Fig. 1.2. The
latter is different from the former as a local controller is present and the communi-
cation network is used to close the loop between the main controller and the local
system. This structural distinction may have some theoretical as well as practical
values, the latter, however, may be regarded as a hierarchical combination of the
direct structured NCS and a conventional local control system and therefore it is not
absolutely necessary to investigate the hierarchical structure as a brand new type
of NCSs. In fact, most available works on NCSs to date have focused on the direct
structure, which is also the main focus of this brief tutorial and the book.

ybzhao@zjut.edu.cn



1.2 Communicational Characteristics of NCSs 3

Fig. 1.1 Networked control systems in the direct structure

Fig. 1.2 Networked control systems in the hierarchical structure

1.2 Communicational Characteristics of NCSs

This section introduces the basics of NCSs, where the emphasis is on the differences
between NCSs and conventional control systems, that is, the distinct and unique
characteristics of NCSs that are brought by the inserted communication network.

1.2.1 Network Topology

In the presence of the communication network in the NCSs, the conventional control
components including the sensor, the controller and the actuator work as network
nodes. From this perspective, two issues need to be addressed, as follows.

ybzhao@zjut.edu.cn



4 1 A Brief Tutorial of Networked Control Systems

1.2.1.1 Time-Synchronization

The control components need to be time synchronized to act properly. This is a fun-
damental basis of conventional control systems, but is usually missing in NCSs due
to the use of the distributed communication networks [34]. Under certain conditions,
time-synchronization in NCSs may not be a necessary condition if the network-
induced delay in the backward channel is not required for the calculation of the con-
trol signals and/or the network-induced delay in the forward channel is not required
for the implementation of the control actions. In some other cases, as discussed in
[35, 36], time-synchronization together with the use of time stamps in NCSs can
offer an advantage over conventional time delay systems since the backward channel
delay is known by the controller and the forward channel delay (round trip delay as
well) is known by the actuator. This advantage can then be used to derive a better
control structure for NCSs as done in [35, 37].

1.2.1.2 Drive Mechanism

The sensor and the actuator can be driven either by time or event. The difference
between the two drive mechanisms lies in the trigger method that initiates the control
components. For the time-driven mechanism, the control components are trigged to
work at regular intervals, while for the event-driven mechanism the control compo-
nents are only trigged by predefined “events”. From a broad perspective time-driven
can be regarded as a special case of event-driven, when the trigger events for the latter
are chosen as the time. Therefore, it is no wonder why the event-driven mechanisms
are more sophisticated and may require ancillary devices for it to work.

The sensor is usually time-driven, while the controller and the actuator can either
be time-driven or event-driven. For more information on the drive mechanism for the
control components, the reader is referred to [38–41] and the references therein. It is
worth mentioning though, with different drive mechanisms different system models
for NCSs are obtained and event-driven control components generally lead to a better
system performance.

1.2.2 Packet-Based Data Transmission

The data in NCSs is encoded in the data packets and then transmitted through the
communication network. A typical data packet is shown in Fig. 1.3. Packet-based
transmission is one of the most important characteristics of NCSs that distinguishes
it from conventional control systems [42–44]. This characteristic can mean that the
perfect data transmission as assumed in conventional control systems is absent in
NCSs, posing the most challenging aspect in NCSs. The communication constraints
caused by the packet-based transmission inNCSs include the network-induced delay,
data packet dropout, data packet disorder, etc., which are detailed in what follows.
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Fig. 1.3 The typical data packet structure where NCS is sharing the data packet with other
applications

1.2.2.1 Network-Induced Delay

The transmission time for the data packets introduces network-induced delays to
NCSs, which are well known to degrade the performance of the control systems.

There are two types of network-induced delays according to where they occur.

• τsc: Network-induced delay from the sensor to the controller, i.e., backward
channel delay;

• τca : Network-induced delay from the controller to the actuator, i.e., forward
channel delay.

The two types of network-induced delays may have different characteristics [45].
In most cases, however, these delays are not treated separately and only the round
trip delay is of interest [15, 46–48].

According to the types of the communication networks being used in NCSs, the
characteristics of the network-induced delay vary, as follows [33, 49, 50].

• Cyclic service networks (e.g., Toking-Ring, Toking-Bus): Bounded delays which
can be regarded as constant for most occasions;

• Random access networks (e.g., Ethernet, CAN): Random and unbounded delays;
• Priority order networks (e.g., DeviceNet): Bounded delays for the data packets
with higher priority and unbounded delays for those with lower priority.

Network-induceddelay is one of themost important characteristics ofNCSswhich
has been widely addressed in the literature to date, see, e.g., [15, 46, 48, 51–60].

1.2.2.2 Data Packet Dropout

Data transmission error in communication networks is inevitable, which in the case
of NCSs then produces a situation called “data packet dropout”. Data packet dropout
can occur either in the backward or forward channel, and it makes either the sensing
data or the control signals unavailable to NCSs, thus significantly degrading the
performance of NCSs.

In communication networks, two different strategies are applied when a data
packet is lost, that is, either to send the packet again or simply discard it. Using the
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6 1 A Brief Tutorial of Networked Control Systems

terms from communication networks, these two strategies are called Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP) respectively [34]. It is
readily seen that with TCP, all the data packets will be received successfully, although
it may take a considerably long time for some data packets; while with UDP, some
data packets will be lost forever.

As far as NCSs is concerned, UDP is used in most applications due to the real-
time requirement and the robustness of control systems. As a result, the effect of data
packet dropout in NCSs has to be explicitly considered, as done in, e.g., [61–65].

1.2.2.3 Data Packet Disorder

In most communication networks, different data packets suffer different delays,
which then produces a situation where a data packet sent earlier may arrive at the
destination later, or vice versa, see Fig. 1.4. This phenomenon is referred to as data
packet disorder. The existence of data packet disorder can mean that a newly arrived
control signal in NCSs may not be the latest, which never occurs in conventional
control systems. The control performance will be inevitably degraded if the control
algorithm has not taken explicit consideration of the disordered data. Some prelimi-
nary works have been done, usually using an active compensation scheme [66–68].

Fig. 1.4 Data packet disorder in NCSs
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1.2.2.4 Single and Multi-packet Transmission

When the sensing data and the control signals are sent via data packets of the network,
another situation occurs: in a case where, for example, multiple sensors are used and
distributed geographically in NCSs and thus they send their sensing data separately
to the controller over the network, the controller may have to wait for the arrival of all
the sensing data packets before it is able to calculate the control actions, and if only
one sensing data packet is lost, all the other sensing data packets have to be discarded
due to incompleteness. We call this situation the “multi-packet” transmission of the
data in NCSs.

Another situation in NCSs is where the sensing data or the control signals of
multiple steps are sent via a single data packet over the network, since the packet
size used in NCSs can be very large compared with the data size required to encode
a single step of sensing data or control signal. This “single-packet” transmission
of the data in NCSs is the fundamental basis of the so-called packet-based control
approach [37].

1.2.3 Limited Network Resources

The limitation of the network resources in NCSs is primarily caused by the lim-
ited bandwidth of the communication network, which results in the following three
situations in NCSs that are distinct from conventional control systems.

1.2.3.1 Sampling Period, Network Loads and System Performance

NCSs is a special class of sampled data systems due to the digital transmission of
the data in communication networks. However, in NCSs, the limited bandwidth of
the network produces a situation where, a smaller sampling period may not result in
a better system performance which is normally true for sampled data systems [4, 25,
69–71].

This situation happens because, with too small a sampling period, too much sens-
ing data will be produced; thus overloading the network and causing congestion,
which will result in more data packet dropouts and longer delays, and then degrade
the system performance. The relationship between the sampling period, network
loads and system performance in NCSs is illustrated in Fig. 1.5. For example, when
the sampling period decreases from the value corresponding to point “a” to “b”,
the system performance is getting better as in conventional sampled data systems
since the network congestion does not appear until point “b”; However, the system
performance is likely to deteriorate due to the network congestion when the sam-
pling period is getting even smaller from the value corresponding to point “b” to “c”.
Therefore, the relationship shown in Fig. 1.5 implies that there is a trade-off between
the period of sampling the plant data and the system performance in NCSs, that is, in
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8 1 A Brief Tutorial of Networked Control Systems

Fig. 1.5 Relationship between the sampling period, network loads and system performance in
NCSs

NCSs an optimal sampling period exists which offers the best system performance
(point “b” in Fig. 1.5).

1.2.3.2 Quantization

Due to the use of data networks with limited bandwidth, signal quantization is
inevitable in NCSs, which has a significant impact on the system performance. Quan-
tization in the meantime is also a potential method to reduce the bandwidth usage
which enables it to be an effective tool to avoid the network congestion in NCSs
and thus improve the system performance of NCSs. For more information on the
quantization effects in NCSs, the reader is referred to [72–76] and the references
therein.
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1.2.3.3 Network Access Constraint and Scheduling

An NCS may use only part of the payload and share the data packet with other
applications. These other applications can be NCSs or not. In such a case, the limited
bandwidth of the network makes that all the subsystems can not access the network
resource at the same time. A scheduling algorithm is therefore needed to schedule
the timeline of when and how long a specific subsystem can occupy the network
resource. At the same time, under the satisfactory control performance constraint,
the less bandwidth an NCS uses, the better it does to other applications [77–80].

1.3 The Research on Networked Control Systems

In this section, we briefly survey the state-of-the-art research on NCSs. This consists
of two parts, categorized according to the methodologies used in these research, i.e.
the first category is dominated by the use of the control theory while the second one
adopts a co-design strategy by combining control and communication together.

1.3.1 Control-Centred Research on NCSs

Since the renewed interest in NCSs, the research on NCSs has been primarily done
within the control theory community [33].

From the control theory community, one is concerned with the theoretical analy-
sis of the control performance of NCSs where the network in NCSs is modeled by
predetermined parameters to the control system. In this type of research, the commu-
nication characteristics of NCSs, e.g., the network-induced delay, can be formulated
and incorporated into the system as some parameters, thereby yielding a conventional
control system for further analysis and design. This type of research simplifies the
modeling and analysis of NCSs, enabling all existing control methods to be readily
applied to NCSs. Hence, such a research strategy has been dominating the research
field for a significant period [33, 81].

Since the communication characteristics are assumed to be given parameters, the
design of NCSs then faces great conservativeness. Most works can only focus on the
extension of existing control approaches to NCSs without full use of the communi-
cation characteristics of NCSs. This then ignores the possibility of optimizing the
system performance by making efficient use of the network characteristics [82–84].

The conventional control approaches and theories that have been applied to NCSs
are briefly surveyed, as follows.

• Time Delay Systems. As far as the network-induced delay is concerned, it is
natural to model NCSs as a special class of time delay systems. This research
method covers a vast range of research on NCSs, see, e.g., in [55, 85–88], and the
survey in [15, 33].
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10 1 A Brief Tutorial of Networked Control Systems

An interesting issue here is to determine the Maximum Allowable Delay Bound
(MADB) ofNCSs, which is the upper bound of the transfer interval that ensures the
stability or other performance objectives of NCSs. The determination of MADB
is important in theory and can also play a guiding role for practical applications.
One can refer to the survey paper in [89] for more information on this issue.

• Stochastic control. As mentioned above, the communication constraints in NCSs
are stochastic in nature, thus enabling the application of conventional stochastic
control approaches toNCSs. An early study can be found in [45], where the charac-
teristics of the network-induced delay were explicitly formulated and preliminary
stochastic stability criteria of NCSs were obtained; [51] extended the work in [7]
to a stochastic optimal control framework and gave the stochastic optimal state
feedback and output feedback controllers, respectively; In [56], the sufficient and
necessary conditions of the stochastic stability of NCSs were obtained based on
theMarkov jump system framework. For further information, the reader is referred
to the survey in [23].

• Optimal control. As a very successful idea both in theory and practical appli-
cations, optimal control has also found its position in NCSs. Undoubtedly, con-
ventional optimal control approaches can be used in the networked control envi-
ronment to design the controller for NCSs, see, e.g., in [60, 62, 90–93]; and as a
special class of optimal control approaches, Model Predictive Control (MPC, or
Receding Horizon Control (RHC)) seems to be more suitable for the networked
control environment and “a major extension required to apply model predictive
control in networked environments would be the distributed solution of the under-
lying optimization problem” [43]. Examples of the application of MPC to NCSs
can be seen, e.g., in [36, 94–98].

• Switched system theory. Another important tool in the study onNCSs is switched
system theory, which is typically used by modelling different network conditions
in NCSs as different system modes. This approach can readily deal with network-
induced delay as well as data packet dropout in NCSs, and the limitation of the
approach is causedmainly by howwellwe understand the properties of the changes
of the network conditions, which is generally difficult. For the research in this area,
the reader is referred to [99–103] and the references therein.

1.3.2 Co-Design for NCSs

As has been pointed out earlier, it is the communication network which replaces the
direct connections among the control components in conventional control systems
that makes NCSs distinct. Therefore, the so-called co-design approach to NCSs,
an approach that integrates both control and communication, has been an emerging
trend in recent years. The communication constraints are no longer assumed as
predetermined parameters but act as designable factors, and by the efficient use of
these factors a better performance can be expected [36, 42, 83, 97, 104–108]. We
give two examples of the co-design approach to NCSs.
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• Packet-based control approach. As discussed in Sect. 1.2.2, the packet-based
transmission is one of themost distinct characteristics of NCSs. This characteristic
can be used to derive a co-design control structure for NCSs, called the packet-
based control framework, as done in [36, 37, 109, 110]. The packet-based control
approach has its origin in [95, 107], where with the use of generalized predictive
control method the packet-based structure of the data transmission was efficiently
used to actively compensate for the communication constraints in NCSs.

• Control and scheduling co-design. In NCSs, a situation may occur where multi-
ple control components share a network with limited bandwidth. In such a situa-
tion, network resource scheduling among the control components is necessary, see
Sect. 1.2.3.3. As far as the scheduling algorithms are concerned, [1] proposed a
dynamic scheduling algorithm called “Try-Once-Discard” (TOD) which allocates
the network resources in a way that the node with the greatest error in the last
reported period has access to the network resource. Nesic and Teel [111] proposed
a Lyapunov Uniformly Globally Asymptotically Stable (UGAS) protocol based
on TOD, which is further improved in [112]. In [113], the authors used the tech-
nique of “communication sequence” (see also in [114]) to deal with the network
access constraint for such a system configuration and modeled the subsystems as
switched systems with two modes “open loop” and “closed loop” which switch
according to whether the current subsystem has access to the medium or not. In
[115], the authors considered a setup where the channel from controller to actu-
ator is linked directly, and the rate monotonic scheduling algorithm is applied to
schedule the transmissions of the sensing data of the subsystems.

1.4 Summary

Despite all the achievements that have been made for networked control systems
in the past decades, more efforts are still needed in the future. Most of these ongo-
ing research adopts the co-design methodology, and the collaborations between the
control, communication as well as computation communities are desirable.

These collaborations will then reveal the values of networked control systems in
broader perspectives, by looking into its close relationship with other systems such
as the Internet of things, cyber-physical systems, multi-agent systems, and so forth.
All these together then bring us the promising future of the networked, intelligent
automation.
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Part I
Design

In this part, we discuss the design of packet-based networked control systems in var-
ious settings. This starts from a general description of the approach to discrete linear
systems in Chap. 2. Then, the approach is extended in two directions, by considering
nonlinear dynamics (Hammerstein systems in Chap. 3 and Wiener systems in Chap.
4) and plants in continuous time (Chap. 5), respectively. A unified design frame-
work of the packet-based control approach to networked control system is finally
completed.
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Chapter 2
Packet-Based Control Design for Networked
Control Systems

In this chapter, we exploit the fact that in most communication networks, data is
transmitted in a “packet” and within its effective load sending a single bit or several
hundred bits of data consumes the same amount of network resources [15]. This
makes it possible in NCSs to actively compensate for the communication constraints
by sending a sequence of control predictions in one data packet and then selecting
the appropriate one corresponding to the current network condition. This packet-
based transmission characteristic motivates us to design the packet-based control
approach to NCSs. Due to the active compensation process in the packet-based con-
trol approach, a better performance can be expected compared to an implementation
where no characteristics of the network are specifically considered in the design.

This chapter is organized as follows. The reason why a co-design approach is
needed for NCSs is explained in Sect. 2.1. The design of the packet-based control
for NCSs is presented in detail in Sect. 2.2, which leads to a novel controller that can
compensate for network-induced delay, data packet dropout and data packet disorder
simultaneously. The stability criteria for the corresponding closed-loop system are
then investigated in Sect. 2.3, using both switched system theory and delay-dependent
analysis, respectively. As an example, a GPC based controller under the packet-based
control framework is designed in Sect. 2.4, which is more feasible in practice com-
pared with previous results. Numerical and experimental examples to illustrate the
effectiveness of the proposed approach are presented in Sects. 2.5 and2.6 concludes
the chapter.

2.1 Problem Statement

The NCS setup considered in this chapter is shown in Fig. 2.1, where τsc,k and τca,k

are the backward and forward channel delays respectively and the plant is linear in
discrete-time which can be represented by
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Fig. 2.1 The block diagram of networked control systems in discrete time

Sd :
{

x(k + 1) = Ax(k) + Bu(k) (2.1a)

y(k) = Cx(k) (2.1b)

where x(k) ∈ R
n , u(k) ∈ R

m , A ∈ R
n×n , B ∈ R

n×m and C ∈ R
r×n . Though it

has not been explicitly shown in Fig. 2.1, the effects of data packet dropout and data
packet disorder are also considered in the packet-based control approach.

For such a system setting, conventional state feedback law is generally obtained
as follows without the consideration of the communication constraints in NCSs,

u(k) = Kx(k) (2.2)

where the feedback gain K is time-invariant.
However, when the network-induced delay is considered, the state feedback law

can not be simply defined as in (2.2) due to the unavailability of the current state
information. The resulting control law using conventional approaches in TDSswould
have the following form

u(k) = Kx(k − τk) (2.3)

where the effect of the delay is not been specially treated in the design. Furthermore,
when data packet dropout is also present, it can be seen from Fig. 2.1 that no matter
where data packet dropout occurs, a certain control input will be unavailable to
the actuator. In conventional TDS theory, there are mainly two ways to deal with
this situation, either use the previous control input or adopt zero control [81]. For
example, in [116], the last step of the control signal is used as the control strategy in
the case of an unsuccessful transmission, as follows,

u(k) =
{
ū(k) if transmitted successfully;

u(k − 1) otherwise.
(2.4)

where ū(k) is the newly arrived control signal at time k.
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2.1 Problem Statement 17

It can be seen that though the conventional control strategies in (2.3) and (2.4)
are simple to implement, they are conservative in that they overlook the potential
of providing an active prediction for the unavailable control input using available
information of the system dynamics and previous system trajectory as done in [36,
107]. Our packet-based control approach is meant to deal with this conservativeness
in a unified framework.

2.2 Packet-Based Control for NCSs

2.2.1 Packet-Based Control for NCSs: A Unified Model

As discussed earlier in Sect. 1.2.2, the presence of the network in NCSs brings to the
system network-induced delay, data packet dropout, data packet disorder, etc. These
communication constraints degrade the system performance significantly whereas
the packet-based transmission of the network also offers the potential of transmitting
a sequence of control signals simultaneously instead of one at a time as typically done
in conventional control systems. This observation is the motivation of the packet-
based control approach to NCSs.

The control law based on the packet-based control approach is obtained as follows
with explicit compensation for the communication constraint (see Algorithm 2.1 to
be given later),

u(k) = K (τ ∗
sc,k, τ

∗
ca,k)x(k − τ ∗

sc,k − τ ∗
ca,k) (2.5)

or simply (see Algorithm 2.2 to be given later),

u(k) = K (τ ∗
k )x(k − τ ∗

k ) (2.6)

where τ ∗
sc,k and τ ∗

ca,k are the network-induced delays of the control action that is
actually applied to the plant at time k and τ ∗

k = τ ∗
sc,k + τ ∗

ca,k .
It is seen from the control laws in (2.5) and (2.6) that in the packet-based control

approach, different feedback gains apply for different network conditions. This is
why we call it a “Varying Feedback Gain” (VFG) scheme for NCSs. As will be
presented later, these packet-based control laws can actively deal with the network-
induced delay, data packet dropout and data packet disorder simultaneously, and
therefore can be regarded as a unified model for NCSs. This control strategy can
be compared with the conventional approach as in (2.3) and (2.4) where no active
compensation is available.

Remark 2.1 In [56], the authors noticed the unavailability of the forward channel
delay τca,k and a controller was designed with the following form

u(k) = K (τsc,k, τca,k−1)x(k − τsc,k − τca,k) (2.7)

ybzhao@zjut.edu.cn

http://dx.doi.org/10.1007/978-981-10-6250-6_1
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where the forward channel delay of the last step τca,k−1 was used instead. However,
actually even τca,k−1 is generally unavailable for the controller in NCSs since in the
case of a arbitrary forward channel delay, τca,k−1 can not be known to the controller
until the controller receives information of τca,k−1 from the actuator. Therefore, it is
seen that τca,k−1 can not be available for the controller earlier than time k−1+τca,k−1

even if an additional delay-free channel exists to send the information of τca,k−1 from
the actuator to the controller. As a result, the above model in (2.7) is inappropriate
in practice unless a special control structure is designed for the networked control
environment as done in this chapter.

2.2.2 Design of the Packet-Based Control for NCSs

For the design of the packet-based control approach, the following assumptions are
required.

Assumption 2.1 The control components in the considered NCS including the sen-
sor, the controller and the actuator, are time-synchronized and the data packets sent
from both the sensor and the controller are time-stamped.

Assumption 2.2 The sum of the maximum forward (backward) channel delay and
the maximum number of continuous data packet dropout is upper bounded by τ̄ca
(τ̄sc accordingly) and

τ̄ca ≤ Bp

Bc
− 1 (2.8)

where Bp is the size of the effective load of the data packet and Bc is the bits required
to encode a single step control signal.

Remark 2.2 From Assumption 2.1, the network-induced delay that each data packet
experiences is known by the controller and the actuator on its arrival.

Remark 2.3 Assumption 2.2 is required due to the need of packing the forward
control signals and compensating for the network-induced delay in the packet-based
control approach, which will be detailed later. The constraint in (2.8) is easy to be
satisfied, e.g., Bp = 368 bit for an Ethernet IEEE 802.3 frame which is often used
[34], while an 8-bit data (i.e., Bc = 8 bit) can encode 28 = 256 different control
actions which is ample for most control implementations; In this case, 45 steps of
forward channel delay is allowed by (2.8) which can actually meet the requirements
of most practical control systems.

The block diagram of the packet-based control structure is illustrated in Fig. 2.2. It
is distinct from a conventional control structure in two aspects: the specially designed
packet-based controller and the corresponding Control Action Selector (CAS) at the
actuator side.
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Fig. 2.2 Packet-based networked control systems in discrete time (with time synchronization)

In order to implement the control law in (2.5) and (2.6), we take advantage of the
packet-based transmission of the network to design a packet-based controller instead
of trying to obtain directly the current forward channel delay as this is actually impos-
sible in practice. As for the control law in (2.5), the packet-based controller deter-
mines a sequence of forward control actions (called “Forward Control Sequence”
(FCS)) as follows and sends them together in one data packet to the actuator,

U1(k|k − τsc,k) = [u(k|k − τsc,k) . . . u(k + τ̄ca|k − τsc,k]T (2.9)

where u(k+i |k−τsc,k), i = 0, 1, . . . , τca,k are the forward control action predictions
based on information up to time k − τsc,k .

When a data packet arrives at the actuator, the designed CAS compares its time
stamp with the one already in CAS and only the one with the latest time stamp is
saved. Denote the forward control sequence already in CAS and the one just arrived
byU1(k1 − τca,k1 |k1 − τk1) andU1(k2 − τca,k2 |k2 − τk2) respectively, then the chosen
sequence is determined by the following comparison rule,

U1(k − τ ∗
ca,k |k − τ ∗

k ) =
{
U1(k2 − τca,k2 |k2 − τk2), if k1 − τk1 < k2 − τk2;
U1(k1 − τca,k1 |k1 − τk1), otherwise.

(2.10)

The comparison process is introduced due to the fact that different data packets
may experience different delays thus producing such a situation where a packet sent
earlier may arrive at the actuator later or vice versa, that is, data packet disorder.
After the comparison process, only the latest available information is used and the
effect of data packet disorder is effectively overcome.

CAS also determines the appropriate control action from the FCS U1(k − τ ∗
ca,k|k − τ ∗

k ) at each time instant as follows

u(k) = u(k|k − τ ∗
k ) (2.11)

The timeline of the packet-based control approach is illustrated in Fig. 2.3. It is
necessary to point out that the appropriate control action determined by (2.11) is
always available provided Assumption 2.2 holds.
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Fig. 2.3 Timeline in the packet-based NCSs

The packet-based control algorithm under Assumptions 2.1 and 2.2 can now be
summarized as follows.

Algorithm 2.1 Packet-based control without time synchronization
if The packet-based controller receives the delayed state data x(k − τsc,k) at time k,
the controller then
Reads the current backward channel delay τsc,k
Calculates the FCS as in (2.9)
Packs U1(k|k − τsc,k) and sends it to the actuator in one data packet with time
stamps k and τsc,k

else
Let k = k + 1 and wait for the next time instant

end if
if A data packet arrives at the CAS then
CAS updates its FCS by (2.10)
The control action in (2.11) is picked out from CAS and applied to the plant

end if

In practice, it is often the case thatwe do not need to identify separately the forward
and backward channel delays since it is normally the round trip delay that affects
the system performance. In such a case, the simpler control law in (2.6) instead of
that in (2.5) is applied, for which the following assumption is required instead of
Assumption 2.2.

Assumption 2.3 The sum of the maximum network-induced delay and the maxi-
mum number of continuous data packet dropout in round trip is upper bounded by τ̄
and

τ̄ ≤ Bp

Bc
− 1 (2.12)
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With the above assumption, the packet-based controller is modified as follows

U2(k − τsc,k |k − τsc,k)

=[u(k − τsc,k |k − τsc,k) . . . u(k − τsc,k + τ̄ |k − τsc,k]T (2.13)

It is noticed that in such a case the backward channel delay τsc,k is not required
for the controller, since the controller simply produces (τ̄ + 1) step forward con-
trol actions whenever a data packet containing sensing data arrives. This relaxation
implies that the time-synchronization between the controller and the actuator (plant)
is not required any more and thus Assumption 2.1 can then be modified as follows.

Assumption 2.4 The data packets sent from the sensor are time-stamped.

The comparison rule in (2.10) and the determination of the actual control action
in (2.11) remain unchanged since both of them are based on the round trip delay τk .

The packet-based control algorithm with the control law in (2.6) can now be
summarized as follows based on Assumptions 2.3 and 2.4.

Algorithm 2.2 Packet-based control with time synchronization
if The packet-based controller receives the delayed state data x(k − τsc,k) at time k,
the controller then
Calculates the FCS as in (2.13)
Packs U2(k − τsc,k |k − τsc,k) and sends it to the actuator in one data packet

else
Let k = k + 1 and wait for the next time instant.

end if
if A data packet arrives at the CAS then
CAS updates its FCS by (2.10)
The control action in (2.11) is picked out from CAS and applied to the plant

end if

The block diagram of the packet-based control approach in Algorithm 2.2 is
illustrated in Fig. 2.4.

Fig. 2.4 Packet-based networked control systems in discrete time (without time synchronization)
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2.3 Stability of Packet-Based NCSs

In this section the stability criteria for the system in (2.1) using the aforementioned
packet-based control approach with the control laws in (2.5) and (2.6) are investi-
gated. Two stability analysis approaches, i.e., results from switched system theory
and delay-dependent analysis, are applied, by modeling the closed-loop system into
different forms. Unless otherwise specified, all the stability related notions are under
the Lyapunov framework.

2.3.1 A Switched System Theory Approach

An intuitive observation on the packet-based control approach is that, at every execu-
tion time, a specific control action is determined by the CAS according to the current
network condition. Thus, regarding this selection process as “switches” among dif-
ferent subsystems, then yields the following analysis from the viewpoint of switched
system theory.

Let X (k) = [x(k) x(k−1) . . . x(k− τ̄ )]. The closed-loop formula for the system
in (2.1) using the packet-based controllers in (2.5) and (2.6) can then be represented
in augmented forms as

X (k + 1) = Ξτ ∗
sc,k ,τ

∗
ca,k

X (k) (2.14)

and

X (k + 1) = Ξτ ∗
k
X (k) (2.15)

respectively, where

Ξτ ∗
sc,k ,τ

∗
ca,k

=

⎛
⎜⎜⎜⎜⎜⎝

A · · · BKτ ∗
sc,k ,τ

∗
ca,k

· · · · · ·
In 0

In 0
. . .

...

In 0

⎞
⎟⎟⎟⎟⎟⎠

,

Ξτ ∗
k

=

⎛
⎜⎜⎜⎜⎜⎝

A · · · BKτ ∗
k

· · · · · ·
In 0

In 0
. . .

...

In 0

⎞
⎟⎟⎟⎟⎟⎠

,

and In is the identity matrix with rank n.
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With the closed-loop systemmodel in (2.14),we then obtain the following stability
criterion.

Theorem 2.1 The closed-loop system in (2.14) is stable if there exists a positive
definite solution P = PT > 0 for the following (τ̄sc + 1) × (τ̄ca + 1) LMIs

Ξ T
τ ∗
sc,k ,τ

∗
ca,k

PΞτ ∗
sc,k ,τ

∗
ca,k

− P < 0

Proof Let V (k) = XT (k)PX (k) be a Lyapunov candidate, and then its increment
along the system in (2.14) can be obtained as

ΔV (k) = V (k + 1) − V (k)

= XT (k)(Ξ T
τ ∗
sc,k ,τ

∗
ca,k

PΞτ ∗
sc,k ,τ

∗
ca,k

− P)X (k)

< 0

which completes the proof.

The following stability criterion for the closed-loop systemmodel in (2.15) readily
follows from Theorem 2.1.

Proposition 2.1 The closed-loop system in (2.15) is stable if there exists a positive
definite solution P = PT > 0 for the following (τ̄ + 1) LMIs

Ξ T
τ ∗
k
PΞτ ∗

k
− P < 0

2.3.2 A Delay Dependent Analysis Approach

Unlike the switched system theorem approach, in this subsection the closed-loop
stability is investigated using a delay dependent analysis approach as in [117].

Without augmenting the system states as done in the last subsection, the closed-
loop formula for the system in (2.1) using the packet-based controller in (2.5) can
be obtained as

x(k + 1) = Ax(k) + BK (τ ∗
ca,k, τ

∗
sc,k)x(k − τ ∗

k ), (2.16)

It is noticed that in practice there is at least a single step delay in both the for-
ward and backward channels, and therefore we have τ ∗

k = τ ∗
sc,k + τ ∗

ca,k ≥ 2. Let
K̄ = max2≤τ ∗

k ≤τ̄ca+τ̄sc ||K (τ ∗
ca,k, τ

∗
sc,k)|| where || · || denotes the Euclidean norm.

Then BK (τ ∗
ca,k, τ

∗
sc,k) can be represented by

BK (τ ∗
ca,k, τ

∗
sc,k) = Bm · K ′(τ ∗

ca,k, τ
∗
sc,k) (2.17)

where Bm = K̄ B is a constant matrix and K ′(τ ∗
ca,k, τ

∗
sc,k) = K (τ ∗

ca,k ,τ
∗
sc,k )

K̄
.
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It is readily to conclude that ||K ′(τ ∗
ca,k, τ

∗
sc,k)|| ≤ 1, ∀ 1 ≤ τ ∗

ca,k ≤ τ̄ca, 1 ≤
τ ∗
sc,k ≤ τ̄sc.

Theorem 2.2 If there exists Pi = PT
i > 0, i = 1, 2, 3, X =

(
X11 X12

∗ X22

)
≥ 0,

Ni , i = 1, 2 with appropriate dimensions and γ > 0 satisfying the following two
LMIs,

⎛
⎝ X11 X12 N1

∗ X22 N2

∗ ∗ P3

⎞
⎠ ≥ 0 (2.18)

⎛
⎜⎜⎝

Φ11 Φ12 (A − I )T H P1Bm

∗ Φ22 + γ I 0 0
∗ ∗ −H HBm

∗ ∗ ∗ −γ I

⎞
⎟⎟⎠ < 0 (2.19)

where

Φ11 = (τ̄ − 1)P2 + P1(A − I ) + (A − I )T P1 + N1 + NT
1 + τ̄ X11,

Φ12 = NT
2 − N1 + τ̄ X12,

Φ22 = −P2 − N2 − NT
2 + τ̄ X22,

H = P1 + τ̄ P3,

then the closed-loop system in (2.16) is stable.

Proof Let d1 = 2, d2 = τ̄ , and ΔAd(k) = BK (τ ∗
ca,k, τ

∗
sc,k) in Theorem 7.3 in [117],

then the above theorem can be obtained using the same techniques as in [117].

Remark 2.4 Following the same procedure, the stability criterion for the system in
(2.1) using the packet-based controller in (2.6) can be obtained analogously.

Remark 2.5 It is seen that the aforementioned stability criteria are simple proposi-
tions of existing results from switched system theory and delay-dependent analysis
respectively. The former emphasizes on the “switch” property of packet-based con-
trol while the latter on the “time delay” property of the system. However, none of
them is perfect: the switched system theory approach does not consider explicitly
the time delay by augmenting the system states, whilst the delay-dependent analysis
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approach neglects the “switch” property which therefore leads to a stability crite-
rion that is valid for any type of delay changes within an allowed upper bound.
Hence, better stability analysis is still needed for the proposed packet-based control
approach.

Up to now we have provided the packet-based control structure for NCSs whilst
the controller design remains to be open. In fact, under the packet-based control
framework, any conventional design approach is eligible to be applied to obtain the
VFGs as in (2.5) and (2.6) provided it can result in a satisfactory system performance.
In the following section, a Generalized Predictive Control (GPC) based controller is
designed as an example.

2.4 Controller Design: A GPC-Based Approach

In GPC, an optimization process is repeated at every control instant to determine a
sequence of forward control signals that optimize future open-loop plant behavior
based on current system information. Different from conventional GPC implemen-
tations where only the first control prediction is actually applied to the plant, in this
book the first τ̄ca +1 (or τ̄ +1 for the control law in (2.6)) forward control predictions
are all used to implement the packet-based control approach proposed in the previous
section.

Taking account of the communication constraints inNCSswhich delay the sensing
data, the objective function for open-loop optimization in GPC is therefore defined
as follows,

Jk,τsc,k = XT (k|k − τsc,k)QX (k|k − τsc,k)

+U ′T (k|k − τsc,k)RU
′(k|k − τsc,k) (2.20)

where Jk,τsc,k is the objective function at time k, U ′(k|k − τsc,k) = [u(k − τsc,k |k −
τsc,k) . . . u(k + Nu − 1|k − τsc,k)]T is the FCS, X (k|k − τsc,k) = [x(k + 1|k −
τsc,k) . . . x(k+Np|k−τsc,k)]T is the predictive state trajectory, Q and R are constant
weighting matrices and Np and Nu are the prediction horizon and the control horizon
respectively.

The predictive states at time k based on the state at time k − τsc,k and the control
sequences from k − τsc,k can be obtained by iteration as

x(k + j |k − τsc,k) = A j+τsc,k x(k − τsc,k)

+
j−1∑

l=−τsc,k

A j−l−1Bu(k + l|k − τsc,k), j = 1, 2, . . . , Np
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Thus we obtain

X (k|k − τsc,k) = Eτsc,k x(k − τsc,k) + Fτsc,kU
′(k|k − τsc,k)

where Eτsc,k = [(Aτsc,k+1)T . . . (Aτsc,k+Np )T ]T and Fτsc,k is a block lower triangular
matrix with its non-null blocks defined by (Fτsc,k )i j = Aτsc,k+i− j B, j − i ≤ τsc,k .

The optimal control inputs can then be calculated by substituting the above equa-
tion to (2.20) and optimizing Jk,τsc,k , which turns out to be state feedback control,

u(k + j |k − τsc,k) = Kτsc,k , j x(k − τsc,k), j = 0, 1, 2, . . . , τ̄ca

where Kτsc,k = [KT
τsc,k ,0 . . . KT

τsc,k ,τ̄ca
]T , Kτsc,k can be calculated by

Kτsc,k = −Mτsc,k (F
T
τsc,k

QFτsc,k + R)−1FT
τsc,k

QEτsc,k

and

Mτsc,k = [0m(τ̄ca+1)×mτsc,k Im(τ̄ca+1)×m(τ̄ca+1) 0m(τ̄ca+1)×m(Nu−τ̄ca ]

The FCS in (2.9) for Algorithm 2.1 can then be constructed by

U (k|k − τsc,k) = Kτsc,k x(k − τsc,k) (2.21)

The FCS in (2.13) for Algorithm 2.2 can also be constructed analogously.

Remark 2.6 (State observer) If the state vector x is not available, an observer must
be included

x̂(k + 1|k) = Ax̂(k|k − 1) + Bu(k) + L(ym(k) − Cx̂(k|k − 1)) (2.22)

where x̂(k) is the observed state at time k, and ym(k) is the measured output. If the
plant is subject to white noise disturbances affecting the process and the output with
known covariance matrices, the observer becomes a Kalman filter and the gain L is
calculated solving a Riccati equation.

Remark 2.7 In [107], state feedback uk = K x̂k|k−τsc,k was also used, where K
was artificially chosen without consideration of the communication constraints and
x̂k|k−τsc,k depends on “the state estimation x̂k−τsc,k |k−τsc,k−1, the past control input up to
uk−1, and the past output up to yk−τsc,k of the system”. However, under the compen-
sation scheme in the forward channel in [107], the whole sequence of the optimal
forward control signals U (k|k − τ ∗

sc,k) is sent to the actuator and only one of them
is chosen to be applied to the plant. Thus, unless information from the actuator is
received we have no idea which control prediction was really used if the data packets
in the forward channel were arbitrarily delayed. Hence, the use of the previous con-
trol inputs implies an additional communication channel which can send the applied
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control inputs to the controller efficiently. Without such a channel, the approaches
proposed in these publications are only applicable to such a situation where there is
no delay or data packet dropout in the forward channel. This requirement is relaxed
in this section by redesigning the controller where the objective function includes
as part of it the previous control increment sequence from k − τsc,k to k − 1. As a
result, the FCS at time k are only based on data up to time k − τsc,k , which is always
available in practice.

2.5 Numerical and Experimental Examples

In this section, numerical and experimental examples are considered to illustrate the
effectiveness of the proposed packet-based control approach to NCSs.

Example 2.1 A second order system in (2.1) is adopted, which is open-loop unstable
with the following system matrices,

A =
(
0.98 0.1
0 1

)
, B =

(
0.04
0.1

)
,C =

(
1 0
0 1

)
.

In order to illustrate the effectiveness of the proposed packet-based control
approach compared with conventional design approach, the Linear Quadratic Opti-
mal (LQR) control method is used to design a state feedback law for this system
without consideration of the communication constraints, which yields the time-
invariant feedback gain KLQR = [0.7044 1.3611]. In the simulation, the initial state
x0 = [−1 − 1]T , the upper bounds of the delays and continuous dropout (disorder)
are τ̄ = 3, τ̄ca = 2, τ̄sc = 1, and the control and prediction horizon in the GPC-based
controller proposed in Sect. 2.4 are set as Nu = 8, Np = 10 respectively. The delays
in both channels are set to vary arbitrarily within their upper bounds.

The simulation results show that it is unstable using this LQR controller (Fig. 2.5)
while it is stable using the packet-based control approach (Fig. 2.6) in the presence
of communication constraints.

Example 2.2 (Example 1 in [107]) The system matrices for the system in (2.1) are
as follows,

A =
⎛
⎝ 1.0100 0.2710 −0.4880
0.4820 0.1000 0.2400
0.0020 0.3681 0.7070

⎞
⎠ , B =

⎛
⎝5 5
3 −2
5 4

⎞
⎠ ,C =

(
1 2 3
4 3 1

)
.

In [107], the above system is illustrated to be stable with the observer in (2.22)
where τ̄sc = 2, τ̄ca = 1, and
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Fig. 2.5 Example 2.1.
System is unstable using
LQR controller
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Fig. 2.6 Example 2.1.
System is stable using
packet-based controller
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L =
⎛
⎝−0.3614 0.3326

0.0332 0.0576
0.2481 −0.0750

⎞
⎠ , K =

(
0.5858 −0.1347 −0.4543

−0.5550 0.0461 0.4721

)
.

However, using the packet-based control approach, this system is unstable with
the same τ̄sc, τ̄ca and L (see Fig. 2.7). Other parameters: (Nu = 8, Np = 10). This fact
seems to mean the approach in [107] is better than the approach in this chapter, but
we need to remember that the approach in [107] takes advantage of more information
to design the predictive controller and some of the information used is not easy to
obtain in practice (Remark 2.7). On the other hand, the simulation results do illustrate
that the VFG scheme in this chapter is superior to the previous Fixed Feedback Gain
(FFG) scheme in [107], where the same system is stable using the approach in this
chapter when τ̄sc = τ̄sc = 1 (Fig. 2.8) and yet is unstable using the same state
feedback in (2.16) with the fixed K above (Fig. 2.9).
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Fig. 2.7 Example 2.2.
Packet-based control,
unstable, τ̄sc = 2, τ̄ca = 1
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Fig. 2.8 Example 2.2. VFG
scheme, stable, τ̄sc = 1,
τ̄ca = 1
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Example 2.3 The system matrices for the system in (2.1) are set as

A =
(
0.7 0.2
0.3 0.5

)
, B =

(
0.05
0.2

)
,C = (

1 0
)
.

This system can be shown using Theorem 2.2 to be stable under τ̄sc = 3, τ̄ca = 2,
Nu = 8, Np = 10. The simulation result is illustrated in Fig. 2.10.

Example 2.4 In this example, an Internet-based test rig is used to verify the effec-
tiveness of the packet-based control approach. This test rig consists of a plant
(DC servo system, see Fig. 2.11a) which is located in the University of Glamor-
gan, Pontypridd, UK, and a remote controller which is located in the Institute of
Automation, Chinese Academy of Sciences, Beijing, China (see Fig. 2.11b). The
plant and the controller are connected via the Internet, whose IP addresses are
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Fig. 2.9 Example 2.2. FFG
scheme, unstable, τ̄sc = 1,
τ̄ca = 1
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Fig. 2.10 Example 2.3.
Packet-based control, stable,
τ̄sc = 3, τ̄ca = 2
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193.63.131.219 and 159.226.20.109 respectively. A web-based laboratory is also
available at www.ncslab.net to implement experiments online. For further informa-
tion of this test rig, the reader is referred to [38, 118].

The DC servo system is identified by [118] to be a third-order system and in
state-space description has the following system matrices,

A =
⎛
⎝ 1.12 0.213 −0.333

1 0 0
0 1 0

⎞
⎠ , B =

⎛
⎝ 1
0
0

⎞
⎠ ,C = (

0.0541 0.0050 0.0001
)
.

To enable the use of state feedback in the packet-based control approach, a state
observer as in Remark 2.6 is designedwith L = [6 6 6]T . The packet-based controller
is calculated by using the GPC-based controller design approach in Sect. 2.4. To this
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(a) The DC servo plant in the University
of Glamorgan.

(b) The network controller in the Chinese
Academy of Sciences.

Fig. 2.11 The Internet-based test rig

end, the upper bounds of the network-induced delays (data packet dropout as well)
in both forward and backward channels are assumed to be 4 steps of the sampling
period (The sampling period is set as 0.04 s and thus the delay bounds are 0.16 s
for both backward and forward channel delays.), since typically the round trip delay
in the experiment is not larger than 0.32 s. The packet-based controller can then be
obtained as

K = [KT
0 KT

1 KT
2 KT

3 KT
4 ]T , K0 =

⎛
⎜⎜⎜⎜⎝

−1.3217 0.1276 0.4296
−0.1356 0.0306 0.0445
0.2688 −0.0220 −0.0816
0.1255 −0.0096 −0.0396
0.0610 −0.0061 −0.0190

⎞
⎟⎟⎟⎟⎠ ,

K1 =

⎛
⎜⎜⎜⎜⎝

−0.2193 0.0219 0.0844
0.2177 −0.0032 −0.0662
0.1298 −0.0087 −0.0381
0.0621 −0.0035 −0.0198
0.0114 −0.0014 −0.0035

⎞
⎟⎟⎟⎟⎠ , K2 =

⎛
⎜⎜⎜⎜⎝

0.1120 0.0005 −0.0201
0.1183 0.0032 −0.0348
0.0726 −0.0050 −0.0201
0.0192 −0.0007 −0.0062
0.0035 −0.0009 −0.0010

⎞
⎟⎟⎟⎟⎠ ,

K3 =

⎛
⎜⎜⎜⎜⎝

0.0894 0.0021 −0.0130
0.0832 0.0056 −0.0239
0.0398 −0.0028 −0.0099
0.0106 −0.0001 −0.0035
0.0007 −0.0007 −0.0002

⎞
⎟⎟⎟⎟⎠ , K4 =

⎛
⎜⎜⎜⎜⎝

0.0721 0.0030 −0.0076
0.0515 0.0073 −0.0140
0.0267 −0.0021 −0.0058
0.0059 0.0001 −0.0021
0.0005 −0.0007 −0.0001

⎞
⎟⎟⎟⎟⎠ ,

where the subscripts of K0, K1, K2, K3 and K4 are with respect to different backward
channel delays.

The comparison between the simulation and experimental results is illustrated in
Fig. 2.12, which shows that the packet-based control approach is valid in practice.
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Fig. 2.12 Example 2.4.
Comparison between
simulation and experimental
results of linear packet-based
control system
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It is seen however that there is some difference between simulation and exper-
imental results. Several possible reasons may contribute to this difference: (1) the
identified model for the DC servo system may not be accurate enough; (2) the dead
zone of the DC servo plant has not been considered; and (3) the measurement of the
network-induced delays is not accurate in practice.

2.6 Summary

Since NCSs is actually the integration of conventional control systems and the com-
munication networks, a natural way to deal with the communication constraints
is to put the problem under the co-design framework—design with the integra-
tion of control theory and communication technology. Based on the observation
of the packet-based transmission in the networked control environment, a packet-
based control approach was proposed for NCSs, which can effectively deal with the
network-induced delay, data packet dropout and data packet disorder simultaneously.
Numerical and experimental examples illustrated the effectiveness of the proposed
approach with a GPC-based controller.
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Chapter 3
Packet-Based Control for Networked
Hammerstein Systems

This chapter extends the application of the packet-based control approach proposed
in Chap.2 to a class of input nonlinear systems described by a Hammerstein model,
where a static nonlinear input process is present in the system.A “two-step” approach
is adopted to separate the nonlinear input process from the system so that the packet-
based control approach can be applied to such systems with minor modifications.
Two descriptions of the Hammerstein model, i.e. the input-output description and
the state-space description, are considered, where the stability analysis of the former
in the case of arbitrary delays proved to be a difficulty due to the constraints of the
Popov criterion, while it is solved in the more generalized state-space description by
using switched system theory.

This chapter is organized as follows. After presenting the two system descriptions
in Sect. 3.1, the design of the packet-based controller for networked Hammerstein
systems is then presented in Sect. 3.2, which differs from the standard packet-based
controller in Chap.2 in the compensation for the nonlinear input process. The sta-
bility criteria for both descriptions are then obtained in Sect. 3.3 and numerical and
experimental examples are presented in Sect. 3.4. Section3.5 concludes the chapter.

3.1 System Description

TheHammersteinmodel is a particular category of nonlinear systemswhich consists
of a cascade connection of a static nonlinear input process followed by a dynamic
Linear Time-Invariant (LTI) system. This category of nonlinear systems is important
in theory, and applies to a number of practical applications, see, e.g., in [119–123]. In
this chapter, the Hammerstein model is assumed to be controlled over the network,
see Fig. 3.1 for its configuration.
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Fig. 3.1 The block diagram of networked Hammerstein systems

Two descriptions of the Hammerstein model are considered in this chapter, shown
in (3.1) for the input-output description and in (3.2) for the state-space description,
respectively.

In the input-output description, the Hammerstein model is represented by the fol-
lowing formulas with the combination of the Controlled Auto Regressive Integrated
Moving Average (CARIMA) model and a static nonlinear function f (·),

S
{

I1 : ay(k) = bI1v(k − 1) (3.1a)

v(k) = f (u(k)) (3.1b)

where u, v, y ∈ R are the input, intermediate input and output respectively, a =
1 + a1z−1 + ... + anz−n , b = b0 + b1z−1 + ... + bmz−m with an �= 0, bm �= 0, and
f (·) : R → R is a memoryless static nonlinear function with f (0) = 0.
In state-space form, the Hammerstein model with Single-Input-Single-Output

(SISO) is represented by

S
⎧⎨
⎩

I2 : x(k + 1) = Ax(k) + bI2v(k) (3.2a)

y(k) = cx(k) (3.2b)

v(k) = f (u(k)) (3.2c)

where x ∈ R
n is the system state and u, v, y, f (·) are defined in (3.1).

In the following section, the packet-based control approach is extended to net-
worked Hammerstein systems with the adoption of a two-step approach to separate
the static nonlinear input process from the system. Using this two-step approach, the
packet-based control approach proposed in Chap.2 can be readily implemented with
a compensation process for the static input process in the Hammerstein model.
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3.2 Packet-Based Control for Networked Hammerstein
Systems

It is obvious that the challenge of applying the packet-based control approach to
networked Hammerstein systems in SI1 and SI2 is primarily caused by the efficient
treatment of the nonlinear input process in the Hammerstein model. Fortunately, it is
noticed that the nonlinear input process in the Hammerstein model is memoryless,
static. This observation enables the separation of the nonlinear input process from
the whole system by using an inverse process, and then design only for the linear
part of the Hammerstein model the packet-based controller which has already been
done in Chap.2. This is also why we call it a “two-step” approach to networked
Hammerstein systems, see Fig. 3.2 for its typical setup.

Under the two-step approach framework, in this section the intermediate FCS (and
Forward Control Increment Sequence (FCIS)) for the linear part of the Hammerstein
system are obtained first, and an inverse compensation scheme for the nonlinear input
process is then proposed.

3.2.1 Intermediate FCS (FCIS)

In this subsection, we design for the linear part of the Hammerstein system (3.1a) of
SI1 and (3.2a), (3.2b) of SI2) the intermediate FCS V (k|k − τsc,k) (for system SI1)
and intermediate FCIS ΔV (k|k− τsc,k) (for system SI2), which are defined in (3.3a)
and (3.3b) respectively,

V (k|k − τsc,k) = [v(k|k − τsc,k) · · · v(k + Nu−1|k − τsc,k)]T (3.3a)

ΔV (k|k − τsc,k) = [Δv(k|k − τsc,k) · · · Δv(k + Nu−1|k − τsc,k) ]T (3.3b)

Fig. 3.2 Two-step approach to networked Hammerstein systems
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where Δv(k + i |k − τsc,k) = v(k + i |k − τsc,k) − v(k + i − 1|k − τsc,k), i =
0, 1, 2, . . . , Nu − 1. The FCS (FCIS) is obtained using the GPC approach. The
procedure is similar to that in Sect. 2.4 but with minor modifications. One can refer
to Sect. 2.4 and [124, 125] for more information on the GPC approach.

Remark 3.1 Note that in (3.3a) and (3.3b) Nu steps of forward control predictions
are all used to construct the intermediate FCS (FCIS), which is actually unnecessary
in practice, see Sect. 2.4; we do so only for simplicity of presentation. Therefore, in
practical implementations, selection of appropriate length of FCS (FCIS) is needed.

3.2.1.1 FCS for the Input-Output Description

Without consideration of the nonlinear input process of the Hammerstein system
in (3.1b), the Linear Generalized Predictive Control (LGPC) problem for (3.1a) is
solved for the following objective function:

J I1
k,τsc,k = ||Y (k|k − τsc,k) − �||2Q + ||ΔV ′(k|k − τsc,k)||2R (3.4)

where � = [ω ω · · · ω]TNp+τsc,k
, ω is the set-point, QNp+τsc,k , RNu+τsc,k are diagonal

weight matrixes, Y (k|k − τsc,k) = [y(k − τsc,k + 1|k − τsc,k) y(k − τsc,k + 2|k −
τsc,k) · · · y(k + Np|k − τsc,k)]T , y(k + i |k − τsc,k), i = −τsc,k + 1, · · · , Np are the
predicted outputs, ΔV ′(k|k − τsc,k) = [Δv(k − τsc,k |k − τsc,k) Δv(k − τsc,k + 1|k −
τsc,k) · · · Δv(k+ Nu −1|k− τsc,k)]T , Np is the predictive horizon and ||ψ||2� means
ψT�ψ.

Introduce the following Diophantine equations for j = −τsc,k + 1, · · · , Np,

1 = E jaΔ + z− j−τsc,k Fj

and

E jbI1 = z−( j+τsc,k )E0
j + G j ,when m > 0

where E j = 1+ e j,1z−1 + ... + e j, j+τsc,k−1z−( j+τsc,k−1), Fj = f j,0 + f j,1z−1 + · · · +
e j,nz−n , E0

j = e0j,0 + e0j,1z
−1 + ... + e0j,m−1z

−(m−1), and G j = g j,0 + g j,1z−1 + · · · +
g j, j−1z−( j+τsc,k−1).

Define E = [E0−τsc,k+1 E0−τsc,k+2 · · · E0
Np

]T , if m > 0; 0(Np+τsc,k )×1, other-

wise; G ∈ R(Np+τsc,k )×(Nu+τsc,k )(z−1) with all the entries 0 but G( j, j) = G j if
m > 0; G( j, j) = E jbI1, otherwise, for j = −τsc,k + 1,−τsc,k + 2, · · · , Nu ,
and F = [F−τsc,k+1 F−τsc,k+2 · · · FNp ]T , T = (GT QG + R)−1GT Q, Y0(k|k −
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τsc,k) = EΔv(k − τsc,k − 1) + Fy(k − τsc,k), M = [1 1 · · · 1]T(Nu+τsc,k )×1,

P = [0Nu×τsc,k INu×Nu ], S =

⎛
⎜⎜⎜⎝
1 0 · · · 0
1 1 · · · 0
...

...
. . .

...

1 1 · · · 1

⎞
⎟⎟⎟⎠

Nu+τsc,k

.

The FCS from k to k + Nu − 1 using objective function in (3.4) based on the
information up to time k − τsc,k is then obtained as

V (k|k − τsc,k) = P(Mv(k − τsc,k − 1) + ST (� − Y0(k|k − τsc,k)) (3.5)

3.2.1.2 FCIS for the State-Space Description

For the state-space description, the following objective function is adopted,

J I2
k,τsc,k =

N2∑
j=N1

q j (ŷ(k + j |k − τsc,k) − ω(k + j))2 +
Nu∑
j=1

r j (Δv(k + j − 1))2

(3.6)

Let x̄(k) = [xT (k) v(k − 1)]T , and then system SI2 can be transformed to S ′
I2 as

follows,

S ′
I2 :

{
x̄(k + 1) = Āx̄(k) + b̄Δv(k) (3.7a)

y(k) = c̄x̄(k) (3.7b)

where Ā =
(
A bI2
0 1

)
, b̄ =

(
bI2
1

)
, c̄ = (

c 0
)
.

The forward output predictions at time k based on the information of the state on
time k − τsc,k and control signals from time k − τsc,k − 1 is

ŷ(k + j |k − τsc,k) = c̄ Ā j+τsc,k x̄(k − τsc,k)

+
j−1∑

l=−τ sc,k

c̄ Ā j−l−1b̄Δv(k + l|k − τsc,k)

Let Ŷ (k|k − τsc,k) = [ŷ(k + N1|k − τsc,k) · · · ŷ(k + N2|k − τsc,k)]T , ΔV ′(k|k −
τsc,k) = [Δv(k − τsc,k |k − τsc,k) · · · Δv(k + Nu − 1|k − τsc,k)]T . Then we obtain

Ŷ (k|k − τsc,k) = Eτsc,k x̄(k − τsc,k) + Fτsc,kΔV ′(k|k − τsc,k)

where Eτsc,k = [(c̄ ĀN1+τsc,k )T (c̄ ĀN1+τsc,k+1)T · · · (c̄ ĀN2+τsc,k )T ]T and Fτsc,k is a (N2−
N1 + 1) × (Nu + τsc,k) matrix with the non-null entries defined by (Fτsc,k )i j =
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c̄ ĀN1+τsc,k+i− j−1b̄, j − i ≤ N1 + τsc,k − 1. Note here that Eτsc,k and Fτsc,k vary with
different τsc,ks.

Let �k = [ω(k + N1) · · · ω(k + N2)]T , and then the optimal predictive control
increments from k to k + Nu − 1 can be calculated by following standard techniques
in GPC approach,

ΔV (k|k − τsc,k) = Mτsc,k (�k − Eτsc,k x̄(k − τsc,k)) (3.8)

where Mτsc,k = Hτsc,k (F
T
τsc,k

QFτsc,k + R)−1FT
τsc,k

Q, Q, R are diagonal matrices with
Qi,i = qi , Ri,i = ri respectively and Hτsc,k = [0Nu×τsc,k INu×Nu ], INu×Nu is the identity
matrix with rank Nu .

Remark 3.2 Normally, the minimum prediction horizon can be set as 1. Rewrite the
maximum prediction horizon N2 as Np. The following constraint between Nu and
Np needs to be always held in order to implement the LGPC method successfully,

Nu ≤ Np (3.9)

3.2.2 The Nonlinear Input Process

With the designed intermediate FCIS in (3.8), the nonlinear input process in SI2 is
first considered as follows.

Assume the nonlinear function f (·) in (3.2c) is invertible and denote its inverse
by f̂ −1(·). Then we obtain

Δu(k|k − τsc,k) = f̂ −1(Δv(k|k − τsc,k)) (3.10)

Thus, at every time instant k, the intermediate control increments Δv(k|k −
τsc,k), k = 1, 2, · · · , Nu can be obtained from (3.8), and then the real control incre-
mentsΔu(k|k−τsc,k), k = 1, 2, · · · , Nu can be calculated from (3.10) thus enabling
the control law to be defined for system S ′

I2.
If Δu(k|k − τsc,k) can be calculated accurately using (3.10), thus enabling the

function f̂ −1(·) to be exactly known, then the system with compensation for the
nonlinear input process is equivalent to LGPC and the system is stable if and only if
the linear part of system SI2 with LGPC is stable. However, in practice, it is usually
impossible to calculate Δu(k|k − τsc,k) that accurately, i.e., f̂ −1( f (·)) �≡ 1(·). This
inaccuracy introduces to the LGPCa nonlinear disturbance,whichmakes the stability
analysis difficult.

For simplicity of notation, let �̂f −1(·) : RNu → R
Nu with �̂f −1(ΔV (k|k−τsc,k)) =

[ f̂ −1(Δv(k|k−τsc,k)) · · · f̂ −1(Δv(k+Nu−1|k−τsc,k))]T . Then from the discussion
above, the real FCIS for system SI2 can be obtained as
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ΔU (k|k − τsc,k) = �̂f −1(ΔV (k|k − τsc,k) (3.11)

where ΔU (k|k − τsc,k) = [Δu(k|k − τsc,k) · · · Δu(k + Nu − 1|k − τsc,k)]T .
Remark 3.3 Note that the control increment instead of the control signal itself is used
in the compensation for the nonlinear input process in (3.10). Though the use of con-
trol increments complicates the problem in that the past control increments are also
needed to determine the current control increment, it is inevitable since the objective
function to be optimized in (3.6) takes the form of control increments. In order to
implement the predictive controller in this chapter, the past control increments are
sent to the controller as well as the state information, which is different from both
CCSs and standard packet-based control approach. Note that for a system without
a nonlinear input process in (3.2c), it makes no difference whether the intermediate
control increment or the intermediate control signal itself is used to calculate the real
control signal, while for system SI2 , generally, these two methods give different
control input at time k, i.e., f (Δv(k)) �= f (v(k)) − f (v(k − 1)).

Remark 3.4 For system SI1, the real FCS can be obtained analogously as follows
using the similar inverse compensation scheme as aforementioned

U (k|k − τsc,k) = �̂f −1(V (k|k − τsc,k) (3.12)

where U (k|k − τsc,k) = [u(k|k − τsc,k) · · · u(k + Nu − 1|k − τsc,k)]T .

3.2.3 Packet-Based Control for Networked Hammerstein
Systems

With the aforementioned discussion, the packet-based controllers for networked
Hammerstein systems have been successfully obtained for both descriptions, which
enables the packet-based control structure proposed in Sect. 2.2 to be implemented.
Since the packet-based control structure for networked Hammerstein systems is
exactly the same as the linear system case in Sect. 2.2, we therefore will not address
the design details but only present the packet-based control algorithm as follows,
where we take the state-space description as an example; the reader is referred to
Sect. 2.2 for more details of the packet-based control structure.

The block diagram of the packet-based control structure for networked Hammer-
stein systems in state-space description is shown in Fig. 3.3.
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Fig. 3.3 Packet-based control for networked Hammerstein systems

Algorithm 3.1 Packet-based control for networked Hammerstein systems
Calculation. The packet-based controller calculates the intermediate FCISΔV (k|k−τsc,k) using
(3.8) and then obtains the real FCIS ΔU (k|k − τsc,k) by compensating for the nonlinear input
process using (3.11)
Forward-transmission. ΔU (k|k − τsc,k) is packed and sent to the actuator simultaneously with
time stamps k and τsc,k
Comparison. CAS updates its FCIS according to the time stamps once a data packet arrives
Execution. An appropriate control increment signal is picked out from CAS and applied to the
plant
Backward-transmission. The information of the applied control increment with the sensing state
is sent to the controller

3.3 Stability Analysis of Packet-Based Networked
Hammerstein Systems

In this section, the stability conditions of networked Hammerstein systems using the
packet-based control approach are investigated, for both descriptions in (3.1) and
(3.2). For the input-output description, the Popov criterion is adopted from which a
stability criterion is derived only for a constant network-induced delay whereas for
the state-space description, switched system theory is applied which yields a stability
criterion that is valid for arbitrary network-induced delays.

3.3.1 Stability Criterion in Input-Output Description

From the design of the CAS in Sect. 2.2, the control action adopted by the actuator
at time k is readily obtained as

u(k) = dT
τ ∗
ca,k

U (k − τ ∗
ca,k |k − τ ∗

k ) (3.13)
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where dτ ∗
ca,k

is a Nu × 1 column vector with all entries 0 but the τ ∗
ca,k th being 1, and

τ ∗
k is the round trip delay with respect to τ ∗

ca,k , i.e. τ
∗
k = τ ∗

ca,k + τ ∗
sc,k .

Combining (3.1), (3.5), (3.12) , (3.13), the packet-based control approach applied
to the networked Hammerstein system in (3.1) can then be fully described by the
following system S∗

I1 (ω is set to 0 without loss of generality),

S∗
I1 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ay(k) = bI1v(k − 1) (3.14a)

v(k) = f (u(k)) (3.14b)

u(k) = dT
τ ∗
ca,k

�̂f −1(V (k − τ ∗
ca,k |k − τ ∗

k )) (3.14c)

V (k − τ ∗
ca,k |k − τ ∗

k ) = Lτ (z
−1)y(k − τ ∗

k ) (3.14d)

where Lτ (z−1) = (z−τ ∗
k −1PMdT

τ ∗
ca,k

−z−τ ∗
k −1PCDEΔdT

τ ∗
ca,k

−I )−1PST F and (3.14d)
is obtained by noticing

V (k − τ ∗
ca,k |k − τ ∗

k ) = PMv(k − τ ∗
k − 1)

− PST EΔv(k − τ ∗
k − 1) − PST Fy(k − τ ∗

k ),

v(k − τ ∗
k − 1) = z−τ ∗

k −1dT
τ ∗
ca,k

V (k − τ ∗
ca,k |k − τ ∗

k ),

and substituting the latter to the former.
In order to derive the stability criterion for system S∗

I1, the following Popov
criterion is required.

Lemma 3.1 (Popov criterion, see [120]) Suppose that H(z−1) in Fig.3.4 is stable
and 0 ≤ �(θ) ≤ Kθ. Then the closed-loop system is stable if 1/K + Re(H(z−1) >

0,∀|z| = 1.

In the case of constant delays, we have that τ ∗ = τ ∗
k , τ ∗

ca = τ ∗
ca,k, τ

∗
sc = τ ∗

sc,k,∀k,
are all constant. Apply Lemma3.1 to system S∗

I1 and denote the characteristic poly-
nomial of a transfer function H(z−1) by δ(H(z−1)), we then obtain the following
theorem.

Theorem 3.1 Suppose the roots of δ(Aτ (z−1)) = 0 are all located in the unit circle.
Then the system in (3.14) is stable if there exists a positive constant K such that

Fig. 3.4 Popov criterion
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1. the input nonlinearity of the plant satisfies

0 ≤ v ≤ Kv̄, (3.15a)

2. the network-induced delay satisfies

1

K + Re{Aτ (z
−1)} > 0,∀|z| = 1, (3.15b)

where Aτ (z−1) = z−τ∗−1dT
τ∗
ca
Lτ (z−1)bI1

a , and v̄(k) = Aτ (z−1v(k)) is the theoretical input
value to the CARIMA model.

Proof Without loss of generality assumeω = 0. Notice that for any column vector P

with an appropriate dimension, f (dT
τ ∗
ca

�̂f −1(P)) = f · f̂ −1(dT
τ ∗
ca
P) from the definition

of �̂f −1(·). Then from (3.14) we obtain

v(k) = f (u(k))

= f (dT
τ ∗
ca

�̂f −1(V (k − τ ∗
ca|k − τ ∗))

= f · f̂ −1(dT
τ ∗
ca
Lτ (z

−1)y(k − τ ∗))

= f · f̂ −1(Aτ (z
−1)v(k))

= f · f̂ −1(v̄(k))

This is equivalent to the block diagram shown in Fig. 3.5. Thus the theorem can
be easily obtained by applying Lemma 1 to Fig. 3.5.

3.3.2 Stability Criterion in State-Space Description

Similar to (3.13), from the design of the CAS in Sect. 2.2, the incremental control
action adopted by the actuator at time k is readily obtained as

Δu(k) = Δu(k|k − τ ∗
k ) = dT

τ ∗
ca,k

ΔU (k − τ ∗
ca,k |k − τ ∗

k ) (3.16)

Fig. 3.5 The simplified
block diagram of
packet-based control for
networked Hammerstein
systems in (3.1)
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where dτ ∗
ca,k

, τ ∗
k , τ

∗
ca,k and τ ∗

k = τ ∗
ca,k + τ ∗

sc,k are defined in (3.13).
From (3.13), (3.11), (3.16) and noticing for any vector V with an appropriate

dimension, dT
τ ∗
ca,k

�̂f −1(V ) = f̂ −1(dT
τ ∗
ca,k

V ), we then obtain (assume the set point ω = 0
w.l.o.g.)

Δu(k) = dT
τ ∗
ca,k

ΔU (k − τ ∗
ca,k |k − τ ∗

k )

= dT
τ ∗
ca,k

�̂f −1(ΔV (k − τ ∗
ca,k |k − τ ∗

k )

= f̂ −1(dT
τ ∗
ca,k

ΔV (k − τ ∗
ca,k |k − τ ∗

k )

= f̂ −1(−K ∗
τ ,k x̄(k − τ ∗

k )) (3.17)

where K ∗
τ ,k = dT

τ ∗
ca,k

Mτsc,k Eτsc,k .
1 The real incremental control action for the linear

system in (3.2a) and (3.2b) at time k can then be obtained as

Δv(k) = f (Δu(k)) = f ◦ f̂ −1(−K ∗
τ ,k x̄(k − τ ∗

k )) (3.18)

where f ◦ f̂ −1(·) = f ( f̂ −1(·)) is the composite function of f (·) and f̂ −1(·).
Let X (k) = [x̄ T (k − τ̄ ) · · · x̄ T (k)]T , w(k) = Δv(k). The closed-loop formula

for the system in (3.7) with the controller in (3.18) can then be represented by

S∗
I2 :

{
X (k + 1) = ÃX (k) + b̃w(k) (3.19a)

w(k) = f ◦ f̂ −1(−K ∗
τ̄ ,k X (k)) (3.19b)

where b̃ = [0n+1,1 · · · 0n+1,1b̄Tn+1,1]T , K ∗
τ̄ ,k is a 1× (τ̄ + 1) block matrix with block

size of 1× (n+1) and all its blocks 0 except the (τ̄ +1−τ ∗
k )th being K ∗

τ ,k (the set of

all the possible K ∗
τ̄ ,k will be denoted byK), and Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0n+1 In+1

0n+1 In+1 0
. . .

. . .

0 0n+1 In+1

Ā

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

As has been pointed out in Sect. 3.2.2, the compensation for the nonlinear input
process using (3.10) is generally not accurate, and this inaccuracy introduces to the
linear part of the Hammerstein system in (3.2a) and (3.2b) a nonlinear disturbance,
which appears in the form of f ◦ f̂ −1(·). Though generally f ◦ f̂ −1(·) �≡ 1(·), it
is reasonable to assume that the calculation error meets some accuracy requirement

1Note that the value of K ∗
τ ,k varies with the delays in both channels, and thus it has (τ̄ca +1)(τ̄sc+1)

different values in total.
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to a certain extent, which results in a sector constraint for the term f ◦ f̂ −1(·), as
described in Assumption 3.1 as follows.2

Assumption 3.1 The nonlinearity due to the calculation inaccuracy is supposed to
satisfy the following sector constraint: ∃0 < ε ≤ ε̄ < ∞, s.t.

εα ≤ f ◦ f̂ −1(α) ≤ ε̄α,∀α ∈ R (3.20a)

or denoted by

f ◦ f̂ −1(·) ∈ [ε, ε̄] (3.20b)

Notice here generally 0 < ε ≤ 1 ≤ ε̄ < ∞.

Assumption 3.1 implies that for any specific α ∈ R, there exists a real number
εα, ε ≤ εα ≤ ε̄ such that f ◦ f̂ −1(α) = εαα. With this observation, (3.19b) can then
be rewritten as

w(k) = f ◦ f̂ −1(−K ∗
τ̄ ,k X (k)) = −εk K

∗
τ̄ ,k X (k) (3.21)

where εk ∈ [ε, ε̄] represents the compensation for the specific nonlinearity for the
term K ∗

τ̄ ,k X (k) at time k.
With (3.19a) and (3.21), the closed-loop system in S∗

I2 can then be written as

X (k + 1) = ÃX (k) + b̃w(k)

= ( Ã − εk b̃K
∗
τ̄ ,k)X (k)

= Λ(εk, K
∗
τ̄ ,k)X (k) (3.22)

where the closed loop matrix Λ(εk, K ∗
τ̄ ,k) = Ã − εk b̃K ∗

τ̄ ,k has the following form

Λ(εk, K
∗
τ̄ ,k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0n+1 In+1

0n+1 In+1 0
. . .

. . .

0 0n+1 In+1

· · · −εk b̄K ∗
τ ,k · · · Ā

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

where the position and value of the term−εk b̄K ∗
τ ,k depend on specific delays in both

channels at time k, i.e., (Λ(εk, K ∗
τ̄ ,k))τ̄+1, j = −εk b̄K ∗

τ ,k , j = τ ∗
k = 1, 2, · · · , τ̄ , and

(Λ(εk, K ∗
τ̄ ,k))τ̄+1,τ̄+1 = Ā − εk b̄K ∗

τ ,k , if τ ∗
k = τ̄ + 1.

2Note that though it is reasonable to place a sector constraint as in Assumption 3.1 to f ◦ f̂ −1(·),
it is somewhat conservative since the calculation of some strongly nonlinear function may not be
that accurate and thus does not satisfy Assumption 3.1.
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Theorem 3.2 The closed-loop system S∗
I2 is stable if Assumption (3.14) holds and

there exists a positive definite solution P = PT > 0 for the following 2(τ̄ca+1)(τ̄sc+
1) LMIs

ΛT (ε, K ∗
τ̄ ,k)PΛ(ε, K ∗

τ̄ ,k) − P ≤ 0 (3.23a)

ΛT (ε̄, K ∗
τ̄ ,k)PΛ(ε̄, K ∗

τ̄ ,k) − P ≤ 0 (3.23b)

where K ∗
τ̄ ,k ∈ K.

Proof Let V (k) = XT (k)PX (k) be a Lyapunov function candidate for system S∗
I2.

The increment of V (k) along the trajectory of system S∗
I2 can be obtained using

(3.22) as

ΔV (k) = XT (k)(Λ(εk, K
∗
τ̄ ,k)

T PΛ(εk, K
∗
τ̄ ,k) − P)X (k)

= XT (k)( ÃT P Ã − P − εk Ã
T Pb̃K ∗

τ̄ ,k − εk K
∗T
τ̄ ,k b̃

T P Ã

+ ε2k K
∗T
τ̄ ,k b̃

T Pb̃K ∗
τ̄ ,k)X (k)

�XT (k)A (εk, K
∗
τ̄ ,k)X (k) (3.24)

where εk ∈ [ε, ε̄], K ∗
τ̄ ,k ∈ K.

Notice that for any εk ∈ [ε, ε̄], there exists 0 ≤ λk ≤ 1 s.t. εk = λkε + (1− λk)ε̄,
and thus we obtain by substituting this into (3.24) that

A (εk, K
∗
τ̄ ,k)

= λkA (ε, K ∗
τ̄ ,k) + (1 − λk)A (ε̄, K ∗

τ̄ ,k) − λk(1 − λk)(ε − ε̄)2K ∗T
τ̄ ,k b̃

T Pb̃K ∗
τ̄ ,k

From (3.23) and (3.24) it is seen that A (ε, K ∗
τ̄ ,k) and A (ε̄, K ∗

τ̄ ,k) are semi-
negative definite for all K ∗

τ̄ ,k ∈ K. Notice that P is symmetric positive definite, and
then K ∗T

τ̄ ,k b̃
T Pb̃K ∗

τ̄ ,k is semi-positive definite as a symmetric matrix, thus enabling
A (εk, K ∗

τ̄ ,k) to be semi-negative definite for any εk ∈ [ε, ε̄] and K ∗
τ̄ ,k ∈ K, which

completes the proof.

Remark 3.5 It is necessary to point out that according to Theorem 3.2, what is
required for the stability of the system is to satisfactorily meet the sector constraint
in Assumption 3.1, nomatter how the inverse function f̂ −1(·) is calculated. It implies
that the function f (·) does not need to be theoretically invertible as long as its inverse
can be obtained by a numerical method and satisfies the sector constraint. The reader
is referred to [127] and the references therein for more information of the calculation
of f̂ −1(·).

The following two special cases are also considered for system SI2.

Case 3.1 The network-induced delays in both channels are constant (noted by τ 0
sc

and τ 0
ca respectively).
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Case 3.2 The calculation of the inverse of the nonlinear function is accurate.

The following corollary readily follows from Theorem 3.2.

Corollary 3.1 The closed loop system S∗
I2 is stable if any one of the following three

conditions holds.

1. Assumption 3.1 and Case3.2 hold and there exists a positive definite solution
P = PT > 0 for the following two LMIs

ΛT (ε, K ∗
τ̄ ,k)PΛ(ε, K ∗

τ̄ ,k) − P ≤ 0 (3.25a)

ΛT (ε̄, K ∗
τ̄ ,k)PΛ(ε̄, K ∗

τ̄ ,k) − P ≤ 0 (3.25b)

where τsc,k ≡ τ 0
sc, τca,k ≡ τ 0

ca and K ∗
τ̄ ,k is therefore fixed.

2. Case3.2 holds and there exists a positive definite solution P = PT > 0 for the
following (τ̄ca + 1)(τ̄sc + 1) LMIs

ΛT (1, K ∗
τ̄ ,k)PΛ(1, K ∗

τ̄ ,k) − P ≤ 0

where K ∗
τ̄ ,k ∈ K.

3. Both of Cases3.1 and 3.2 hold and there exists a positive definite solution P =
PT > 0 for the following LMI

ΛT (1, K ∗
τ̄ ,k)PΛ(1, K ∗

τ̄ ,k) − P ≤ 0

where τsc,k ≡ τ 0
sc, τca,k ≡ τ 0

ca and K ∗
τ̄ ,k is therefore fixed.

3.4 Numerical and Experimental Examples

In this section, numerical and experimental examples are considered to illustrate the
effectiveness of the proposed packet-based control approach to networked Hammer-
stein systems.

Example 3.1 This numerical example is used to illustrate the effectiveness of the
packet-based control approach to system SI1 in input-output description.

The linear part in (3.1a) is adopted as

y(k) − 0.8y(k − 1) = 2v(k − 1) + 3v(k − 2)

The nonlinear input process in (3.1b) is chosen as v = f (u) = u2 and the
practical inverse of f (·) is f̂ −1 = √

v × ε, where ε is a random number with a
uniform distribution in [0 1]. ε is introduced to represent the uncertainty in a practical
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implementation. From (3.15a) in Theorem 3.1 it is seen that K = 1. The predictive
horizon and control horizon are chosen as Np = Nu = 12 in the simulation.

It is seen that the system is stable only for the first two cases according to
Theorem 3.1 since for too large a time delay the system will not satisfy (3.15b)
in Theorem 3.1. The simulation results of three cases: (i) (τca, τsc) = (0, 0); (ii)
(τca, τsc) = (2, 3); and (iii) (τca, τsc) = (3, 7) are shown in Figs. 3.6 and 3.7 and
illustrate the validity of the theoretical analysis.

Example 3.2 This numerical example is used to illustrate the effectiveness of the
packet-based control approach to system SI2 in state-space description.

The linear part of system SI2 is defined as follows which is open-loop unstable,

A =
(
0.98 0.1
0 1

)
, b =

(
0.04
0.1

)
, c = (

1 0
)
.

Fig. 3.6 Example 3.1. (i)
(τca, τsc) = (0, 0); (ii)
(τca, τsc) = (2, 3);
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Fig. 3.7 Example 3.1. (iii)
(τca, τsc) = (3, 7)
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Note the fact that with an inverse process to compensate for the static nonlinear
input process in system SI2, from (3.19b) we know that the system performance
depends only on the accuracy of the compensation process, i.e., the size of the sector
constraint [ε, ε̄] for f ◦ f̂ −1(·) (seeAssumption3.1). In this simulation,we set [ε, ε̄] =
[0.5, 1.5] which means there is approximately 50% error in the compensation for
the input nonlinearity while the input nonlinear function f (·) can be of any form
provided this compensation accuracy is satisfied. All the other parameters are set the
same as above. Such a system with those parameters can be proved to be stable using
Theorem 3.2.

The compensation for the nonlinear input process is shown in Fig. 3.9 (under the
arbitrary delays in the forward channel as shown in Fig. 3.8), from which it is seen
that this compensation strategy is effective for networked Hammerstein systems,
where the parameters are set as Nu = 8, Np = 10, τ̄ = 3, τ̄ca = 2, τ̄sc = 1 and
x0 = [−1 − 1]T .

Fig. 3.8 Example 3.2.
Arbitrary delays in the
forward channel
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Fig. 3.9 Example 3.2. The
effectiveness of packet-based
control for networked
Hammerstein systems
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Fig. 3.10 Example 3.3.
Comparison between
simulation and experimental
results of packet-based
control for Hammerstein
systems
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Example 3.3 In this example, we use the same experiment setup as in Example
2.4 only that a compensation scheme for an input nonlinear process is present with
[ε, ε̄] = [0.8, 1.2]. Since the linear part of the system remains the same, the same
packet-based controller is designed here as in Example 2.4. The comparison between
the simulation and experimental results is illustrated in Fig. 3.10, where it is seen that
the compensation scheme is effective in practice.

3.5 Summary

In this chapter, the packet-based control approach proposed in Chap.2 was extended
to networked Hammerstein systems. In order to deal with the nonlinear input process
in theHammerstein system, a two-step approachwas applied to separate the nonlinear
input process from the whole system, which proved to be effective for both descrip-
tions of the Hammerstein system, i.e., the input-output description and the state-
space description. For input-output description, a stability criterion was obtained
using Popov criterion, which is valid for a constant delay, while for the state-space
description, stability conditions were obtained for arbitrary delays by using switched
system theory. Numerical and experimental examples illustrated the effectiveness of
the proposed approaches.
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Chapter 4
Packet-Based Control for Networked Wiener
Systems

Following the extension of the packet-based control approach to networked Ham-
merstein systems in Chap.3, another extension readily follows which is the category
of output nonlinear systems described by the Wiener model, where a static nonlin-
ear output process is present in the system. For this type of nonlinear systems, the
two-step approach proposed in Chap.3 can still be applied to separate the nonlin-
ear process from the system, thus enabling the packet-based control approach to
be implemented in this case. Different from the input nonlinearity case, a specially
designed observer is proposed for the implementation of the two-step approach to
networked Wiener systems, and as a result, the stability criterion of the correspond-
ing closed-loop system depends not only on the communication conditions but the
error of the observer.

This chapter is organized as follows. Section4.2 presents the design details of
the packet-based control approach to networked Wiener systems; Sect. 4.3 analyzes
the stability of the closed-loop system; Sect. 4.4 presents numerical and experimen-
tal examples to illustrate the effectiveness of the proposed approach and Sect. 4.5
concludes the chapter.

4.1 System Description

This chapter considers a class of SISO Wiener system So [128–131], described as
follows,

So :
⎧
⎨

⎩

x(k + 1) = Ax(k) + bu(k) (4.1a)

y(k) = cx(k) (4.1b)

z(k) = f (y(k)) (4.1c)

where x ∈ R
n , u, y, z ∈ R, A ∈ R

n×n , b ∈ R
n×1, c ∈ R

1×n , f (·) is a memoryless
static nonlinear function and u(k) is to be determined (see Sect. 4.2). In this chapter
the Wiener system is assumed to be controlled over the network, see Fig. 4.1 for its
configuration.

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2018
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52 4 Packet-Based Control for Networked Wiener Systems

Fig. 4.1 The block diagram of networked Wiener Systems

Fig. 4.2 Two-step approach to networked Wiener systems

As in Chap.3, the memoryless static nonlinear function f (·) in this chapter is
assumed to be invertible with its inverse denoted by f̂ −1(·). Notice that f̂ −1(·) can
not be obtained accurately in practice which means ϕ(·) � f̂ −1( f (·)) �≡ 1(·). The
approximate intermediate output ỹ(k) (Fig. 4.2) can thus be obtained as follows,

ỹ(k) = f̂ −1(z(k)) = ϕ(y(k)) (4.2)

With this inverse process, the packet-based controller for networked Wiener sys-
tems in (4.1) can then be obtained using a LGPC method and a specially designed
state observer as follows.

4.2 Packet-Based Control for Networked Wiener Systems

Let the objective function for system So be defined by

J o
k,τsc,k =

N2∑

j=N1

q j (ŷ(k + j |k − τsc,k) − ω(y; k + j))2

+
Nu∑

j=1

r j (�u(k + j − 1))2 (4.3)
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where N1 and N2 are the minimum and maximum prediction horizons, Nu is the
control horizon, q j , N1 ≤ j ≤ N2 and r j , 1 ≤ j ≤ Nu are weighting factors,
�u(k) = u(k)−u(k−1) is the control increment, ŷ(k+ j |k−τsc,k), j = N1, ..., N2

are the forward predictions of the system outputs, which are obtained on data up to
time k − τsc,k ; ω(y; k + j) is the set point with respect to y and can be obtained
approximately by inverting corresponding set point ω(z; k + j) with respect to z,
i.e.,

ω(y; k + j) = f̂ −1(ω(z; k + j)), j = N1, ..., N2 (4.4)

Letting x̄(k) = [xT (k) u(k − 1)]T , then the linear part of system So (i.e. (4.1a)
and (4.1b)) can be rewritten as follows,

S ′
o :

{
x̄(k + 1) = Āx̄(k) + b̄�u(k) (4.5a)

y(k) = c̄x̄(k) (4.5b)

where Ā =
(
A b
0 1

)

, b̄ =
(
b
1

)

, c̄ = (
c 0

)
.

Following the sameprocedure as inSect. 2.4, the optimalFCIS from k to k + Nu−1
can then be obtained as

�U (k|k − τsc,k) = Mτsc,k (�k(y; ·) − Eτsc,k x̄(k − τsc,k))

where �U (k|k− τsc,k) = [�u(k|k− τsc,k) · · · �u(k+ Nu −1|k− τsc,k)]T , Eτsc,k =
[(c̄ ĀN1+τsc,k )T · · · (c̄ ĀN2+τsc,k )T ]T , Fτsc,k is a (N2−N1+1)× (Nu +τsc,k)matrix with
the non-null entries defined by (Fτsc,k )i j = c̄ ĀN1+τsc,k+i− j−1b̄, j − i ≤ N1 + τsc,k −
1, �k(y; ·) = [ω(y; k + N1) · · · ω(y; k + N2)]T , Mτsc,k = Hτsc,k (F

T
τsc,k

QFτsc,k +
R)−1FT

τsc,k
Q, Q, R are diagonal matrices with Qi,i = qi , Ri,i = ri respectively,

Hτsc,k = [0Nu×τsc,k INu×Nu ], and INu×Nu is the identity matrix with rank Nu .
Since the system states are normally unavailable for the controller, the following

observed system is then constructed,

{
x̂(k + 1) = Ax̂(k) + bu(k) (4.6a)

ŷ(k) = ϕ(cx̂(k)) (4.6b)

to observe the system states,

x̂(k + 1) = Ax̂(k) + bu(k) + L(ỹ(k) − ŷ(k)) (4.7)

where x̂(k) is the observed state at time k.
Letting ˆ̄x(k) = [x̂ T (k) uT (k−1)]T , the real FCIS can then be obtained as follows

when the state observer in (4.6) is present,

�U (k|k − τsc,k) = Mτsc,k (�k(y; ·) − Eτsc,k
ˆ̄x(k − τsc,k)) (4.8)
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Fig. 4.3 Packet-based control for networked Wiener systems

With the FCIS obtained in (4.8), the packet-based control approach can then
be implemented to networked Wiener systems (4.1). Since the whole packet-based
control structure here is exactly the same as in Sect. 2.2, we therefore only illustrate
its block diagram in Fig. 4.3 without further discussion; the reader is referred to
Sect. 2.2 for more information on the design of the packet-based control approach.

4.3 Stability Analysis of Packet-Based Networked Wiener
Systems

In this section, we first prove the proposed state observer in (4.6) is stable under
certain conditions. This fact enables us to construct the stability criterion for the
closed-loop system.

4.3.1 Observer Error

Let the observer error e(k) = x(k) − x̂(k). From (4.1a), (4.6a) we obtain

e(k + 1) = x(k + 1) − x̂(k + 1)

= Ae(k) − L(ỹ(k) − ŷ(k)) (4.9)

Assume ϕ(·) ∈ C1, then by mean value theorem,

ỹ(k) − ŷ(k) = ϕ(cx(k)) − ϕ(cx̂(k))

= cϕ′(ξk))e(k) (4.10)

where ξk ∈ [min{cx(k), cx̂(k)} max{cx(k), cx̂(k)}].
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Combining equations (4.9) and (4.10) yields

e(k + 1) = (A − Lcϕ′(ξk))e(k) (4.11)

Notice that though ϕ(·) �≡ 1(·), it is reasonable to assume that the compensation
for the nonlinear function f (·) is smooth, which means there exists ε > 0 s.t.
|ϕ′(α) − 1| ≤ ε,∀α ∈ R. Thus the dynamics of the observer error can be obtained
as

e(k + 1) =(A − Lc − ζk Lc)e(k)

=Aζk e(k) (4.12)

where Aζk = A − Lc − ζk Lc, |ζk | ≤ ε.

Theorem 4.1 (Observer Error) The observer error converges to 0 if there exists a
positive definite solution Pe = PT

e > 0 for the following two LMIs

AT
ε Pe Aε − Pe < 0

AT
−εPe A−ε − Pe < 0 (4.13)

where Aε = A − Lc − εLc and A−ε = A − Lc + εLc.

Proof Let V (k) = eT (k)Pee(k) be a Lyapunov function candidate for the system
in (4.12). Notice the fact that for any ζk , there exists 0 ≤ λk ≤ 1 such that ζk =
λkε+(1−λk)(−ε). Thus by simple calculation, the incremental V (k) for the system
in (4.12) can be obtained as

�V (k + 1) =eT (k)�ζk e(k)

=eT (k)(λk�ε + (1 − λk)�−ε − 4λk(1 − λk)(Lc)
T PeLc)e(k)

where �ζk = AT
ζk
Pe Aζk − Pe.

Noticing λk(1 − λk) ≥ 0 and (Lc)T PeLc is semi positive definite, then yields
that �V (k) is decreasing which completes the proof.

4.3.2 Closed-Loop Stability

From (4.2) and the design of the CAS, the incremental control action adopted by the
actuator at time k is readily obtained as

�u(k) = dT
τ ∗
ca,k

�U (k − τ ∗
ca,k |k − τ ∗

k )

= −dT
τ ∗
ca,k

Mτ ∗
k
Eτ ∗

k
ˆ̄x(k − τ ∗

k )

= −�τk
ˆ̄x(k − τ ∗

k ) (4.14)
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where dτ ∗
ca,k

is a Nu × 1 matrix with all entries 0 except the (τ ∗
ca,k + 1)th being 1, τ ∗

k ,
τ ∗
ca,k and τ ∗

sc,k are defined in (2.6), �τk = dT
τ ∗
ca,k

Mτ ∗
k
Eτ ∗

k
and the set point is assumed

to be 0 without loss of generality.
Let ē(k) = x̄(k) − ˆ̄x(k) = [e(k) 0]T . Then

ē(k + 1) = Āξk ē(k)

where Āξk =
(
A − Lcϕ′(ξk) 0

0 0

)

.

Let Z(k) = [x̄ T (k − τ̄ ) · · · x̄ T (k)ē(k − τ̄ ) · · · ē(k)]T . The closed-loop system
can then be obtained as

Z(k + 1) = �ξk ,τk Z(k) (4.15)

where �ξk ,τk =
(

�11
τk

�12
τk

0 �22
ξk

)

, �11
τk

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0n+1 In+1

In+1

. . .

In+1

· · · −�τk · · · Ā

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

�22
ξk

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0n+1 In+1

0n+1 In+1

. . .
. . .

. . . In+1

Āξk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, and �12
τk
is a block matrix with all its entries

(blocks) 0 except (�12
τk

)(τ̄−1)×(τ̄−τ ∗
k +1) = −�τk .

Theorem 4.2 [Closed-loop stability] The closed-loop system in (4.15) is stable
if (4.1a) holds and there exists a positive definite solution Pc = PT

c > 0 for the
following (τ̄ca + 1)(τ̄sc + 1) LMIs

(�11
τk

)T Pc�
11
τk

− Pc ≤ 0 (4.16)

Proof By noticing the block-triangular structure of the system matrix �ξk ,τk for
the closed-loop system, it is seen that the state observer in (4.6) can be designed
separately without affecting the stability of the system and the closed-loop system
is stable if we can guarantee the stability of the state observer (Theorem 4.1) and the
following system,

X (k + 1) = �11
τk
X (k) (4.17)

where X (k) = [x̄ T (k − τ̄ ) · · · x̄ T (k)].
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Let V (k) = XT (k)PcX (k) be a Lyapunov function candidate for the system in
(4.17). The incremental V (k) along the trajectory of the system in (4.17) is then
obtained as

�V (k) = XT (k)((�11
τk

)T Pc�
11
τk

− Pc)X (k)

which completes the proof using (4.16).

Remark 4.1 It is worth mentioning that the two conditions (4.13) and (4.16) that
guarantee the stability of the closed-loop system arewith respect to the compensation
accuracy for the nonlinearity and the effect of the network constraints respectively.

4.4 Numerical and Experimental Examples

Example 4.1 The linear system in Example 3.2with a static nonlinear output process
and randomdelays in both channels and data packet dropout in the forward channel, is
adopted, with other parameters of the simulation chosen as τ̄ = 8, τ̄ca = 4, τ̄sc+χ̄ =
4, Nu = 8, Np = 10, ε = 0.5 and the initial state x(0) = x0 = [−0.1 0.2]T . The
delays in both channels are set to vary randomly within their upper bounds. Such
a system using the packet-based control approach can be proved to be stable under
Theorem 4.2.

Two caseswhich illustrate the validity of the compensation for the communication
constraints and the compensation for the output nonlinearity, are shown in Fig. 4.4
and Fig. 4.5 respectively. In both cases, all the other parameters remain the same and
only the evolution of the first state of the system is illustrated. The simulation results
show that the system is stable with the compensation scheme while unstable without
it, which illustrate the validity of the proposed approach in this chapter.

Fig. 4.4 Example 4.1. A
comparison between
with/without compensation
for network constraints
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Fig. 4.5 Example 4.1. A
comparison between
with/without compensation
for output nonlinearity
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Fig. 4.6 Example 4.2.
Comparison between
simulation and experimental
results of packet-based
control for Wiener systems
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Example 4.2 In this example, we use the same experiment setup as in Example 2.4
only that a compensation scheme for an output nonlinear process is present with
[ε, ε̄] = [0.8, 1.2]. Since the linear part of the system remains the same, the same
packet-based controller is designed here as in Example 2.4. The comparison between
the simulation and experimental results is illustrated in Fig. 4.6, where it is seen that
the compensation scheme is effective in practice.

4.5 Summary

In this chapter, the packet-based control approachwas extended to networkedWiener
systems. The idea of the two-step approach proposed for networked Hammerstein
systems in Chap.3 was still adopted, which together with a specially designed state
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observer enabled the packet-based control approach to be implemented in this case.
Closed-loop stability was obtained by using the separate principle and switched
system theory, the validity of which was illustrated by numerical and experimental
examples.
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Chapter 5
Packet-Based Networked Control Systems
in Continuous Time

In all the previous chapters (Chaps. 2, 3, and 4) the packet-based control approach
is considered for plants in discrete time and discrete network-induced delay. The
packet-based control approach is extended to the continuous time case in this chapter,
with the use of a discretization technique for the continuous network-induced delay.
The derived approach leads to a novel model for NCSs in continuous time. This
model, as in the discrete time case, offers the designer the freedom of designing
different controllers with respect to specific network conditions, which is distinct
from previously reported results and results in a better performance. By applying
switched system theory, the stability criterion for the derived model is obtained,
which is then used to obtain an LMI-based stabilized controller for the continuous-
time PBNCSs.

This chapter is organized as follows. The design details of the packet-based control
approach to NCSs in continuous time is first presented in Sect. 5.1, which leads to
a novel model for NCSs. This model is then further analyzed in Sect. 5.2 to obtain
the stability criterion and a stabilized controller by using the results from switched
system theory. A numerical example is given in Sect. 5.3 to illustrate the effectiveness
of the proposed approach and Sect. 5.4 concludes the chapter.

5.1 Packet-Based Control in Continuous Time

The following linear plant in continuous time is considered in this chapter, which is
assumed to be controlled over the network as shown in Fig. 5.1,

Sc : ẋ(t) = Ax(t) + Bu(t) (5.1)

where x ∈ R
n , u ∈ R

m , A ∈ R
n×n and B ∈ R

n×m .
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Fig. 5.1 The block diagram of networked control systems in continuous time

In this section the packet-based control approach proposed in Chap. 2 in the dis-
crete time fashion is extended to the continuous time case, with a discretization
technique to merge the gap between discrete and continuous time. The reader is
referred to Sect. 2.2 for more information on the packet-based control approach in
the discrete time case.

5.1.1 Packet-Based Control for NCSs in Continuous Time

A fundamental basis of the implementation of the packet-based control for NCSs in
discrete time is the construction of the FCS in (2.9) and (2.13), which can be readily
obtained in discrete time. However, a time delay system in continuous time is of
infinite dimension, thus making it difficult to implement readily the packet-based
control approach in the continuous time case because of the difficulty in determining
the FCS as in (2.9) and (2.13). To deal with this difficulty, the continuous network-
induced delay is discretized as follows.

Let τ̄d = dh + τ̄ and ϑ = τ̄d
N , where h is the sampling period. A different FCS

structure compared to (2.9) and (2.13) can then be constructed as follows, which uses
N discrete levels to approach the real network-induced delay,

U (t − τsc(t)|t − τsc(t))

= [u(t − τsc(t)|t − τsc(t)) . . . u(t − τsc(t) + (N − 1)ϑ|t − τsc(t))] (5.2)

where τsc(t) is the continuous backward channel delay of the data packet received
by the controller at time t .

The FCS in (5.2) can now be transmitted in one data packet by the network,
provided the data size required for encoding a single step of the control signal is the
same as the discrete time case. This is generally true since, both single step control
signals are the specific values at one time instant, and therefore the data sizes of
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encoding both signals depend only on the range of the signals and the corresponding
quantization levels, which can be assumed to be the same in both cases.

In order to implement the packet-based control approach, a similar CAS is also
designed at the actuator side. The designed CAS consists of a simple comparison
logic and a memory which can store only a single forward control sequence. When
a FCS arrives at the actuator, it will first be compared using the comparison logic of
the CAS with the one already in the memory of the CAS and only the latest is stored
and applied to the plant. This comparison process is also introduced to overcome the
effect of data packet disorder as done in Sect. 2.2.

For clarity, a FCS is called an “effective” one if it is actually stored after the
comparison process. Note that the kth effective FCS isU (t∗k − τ ∗

k |t∗k − τ ∗
k ), where t∗k

is the time when this sequence is received by the actuator and τ ∗
k the corresponding

round trip delay. The control law during the time period [t∗ik , t∗ik+1) can then be defined
by

u(t) = u(t∗k − τ ∗
k + ikϑ|t∗k − τ ∗

k ), t ∈ [t∗ik , t∗ik+1) (5.3)

where [t∗ik , t∗ik+1) = [t∗k − τ ∗
k + ikϑ, t∗k − τ ∗

k + (ik + 1)ϑ) with ik ∈ N satisfying t∗k ≤
t∗k −τ ∗

k + ikϑ < t∗k+1, and u(t∗k −τ ∗
k + ikϑ|t∗k −τ ∗

k ) is selected fromU (t∗k −τ ∗
k |t∗k −τ ∗

k )

which in this chapter is of the form of state feedback as follows,

u(t∗k − τ ∗
k + ikϑ|t∗k − τ ∗

k ) = K (ik)x(t
∗
k − τ ∗

k ) (5.4)

Note here that the value of the feedback gain K (ik) is dependent on the current
range of the network-induced delay which, for t ∈ [t∗ik , t∗ik+1), is

τ ∗
k (t) = t − (t∗k − τ ∗

k ) ∈ [ikϑ, (ik + 1)ϑ) (5.5)

Remark 5.1 Note that t∗k − τ ∗
k is the time when the sensing data packet is sent from

the sensor from which the kth effective forward control sequence is calculated, and
the sum of the continuous data packet dropout and network-induced delay is upper
bounded by τ̄d , see Fig. 5.2. Therefore the time when the (k + 1)th effective FCS
arrives at the actuator is not later than t∗k − τ ∗

k + τ̄d , that is,

t∗k+1 ≤ t∗k − τ ∗
k + τ̄d ,∀k ≥ 1

The definition of ik yields

τ ∗
k ≤ ikϑ < t∗k+1 − t∗k + τ ∗

k ≤ τ̄d ,∀k ≥ 1

Thus

�τ ∗
k

ϑ
� ≤ ik <

τ̄d

ϑ
= N ,∀k ≥ 1
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Fig. 5.2 Timeline of packet-based networked control systems

where � τ ∗
k
ϑ

� = min{ς|ς ∈ N, ς ≥ τ ∗
k
ϑ

}. Noticing the structure ofU (t∗k − τ ∗
k |t∗k − τ ∗

k ) it
is seen that the control action in (5.3) is always available from U (t∗k − τ ∗

k |t∗k − τ ∗
k ).

Remark 5.2 It is necessary to point out that there exists a situation where, for some
k ≥ 1 and ik , the following relationship holds,

t∗k ≤ t∗ik < t∗k+1 < t∗ik+1

By the control law in (5.3), in this situation the (k + 1)th effective FCS is not
applied to the plant immediately but waits until t∗ik+1, and during the time period
[t∗k+1, t

∗
ik+1) the kth effective FCS is still in action.

It is seen that this strategy artificially increases the delay (less than ϑ) however
it provides the advantage that it produces a constant switch interval between two
subsequent switches of control actions. A constant switch interval undoubtedly sim-
plifies the modeling and analysis, and what is more important, it avoids a situation
where, the switch interval is too short which may affect the stability of the system
according to switched system theory [132].

Based on the above analysis, the algorithmof the packet-based control forNCSs in
continuous time under Assumptions 2.3 and 2.4 can now be summarized as follows.

Algorithm 5.1 Packet-based control in continuous time
if The data packet containing the state information x(t − τsc(t)) is received, the controller then
Calculates the FCS as in (5.2)
Packs U (t − τsc(t)|t − τsc(t)) into one data packet and sends it to the actuator

end if
CAS updates its FCS once a data packet arrives
The effective FCS is applied to the plant by the control law in (5.3)
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Fig. 5.3 Packet-based networked control systems in continuous time

The block diagram of the continuous packet-based network control system is
shown in Fig. 5.3.

5.1.2 A Novel Model for NCSs

Under Algorithm 5.1, and assuming u(t) = 0, t ∈ [t∗0 , t∗1 ], t∗0 = t∗1 − τ̄d , a novel
model for NCSs can now be obtained as

S∗
c :

{
ẋ(t) = Ax(t) + Bu(t), t ∈ [t∗ik , t∗ik+1), k ≥ 1 (5.6a)

u(t) = K (ik)x(t
∗
k − τ ∗

k ), k ≥ 1 (5.6b)

with initial state evolving as x(t) = x(t∗0 )eA(t−t∗0 ) � φ(t), t ∈ [t∗0 , t∗1 ], where ik and
K (ik) are defined in (5.3) and (5.4), respectively.

It is noticed that the derived model for NCSs in (5.6) is distinct from the previ-
ous models as in, e.g., [133] in that the network-induced delay is considered more
precisely and the effects of the data packet dropout and disorder are also included in
the same model. As shown in (5.6b), the discretization of the network-induced delay
and the implementation of the packet-based control approach offer us the advantage
of designing different control actions as in (5.3) for different network conditions. It
is obvious that this advantage results in at least the same system performance as pre-
vious approaches (by designing the same control action for all network conditions),
whereas a better performance is expected since more freedom is given to designers.

Remark 5.3 If Assumption 2.1 holds, then the network-induced delay in the back-
ward channel can be known to the controller by using time stamps as done in Sect. 2.2.
Thus a different FCS compared with (5.2) can be used, which is defined by

U ′(t |t − τsc(t)) = [u(t |t − τsc(t)) . . . u(t + (N − 1)ϑ|t − τsc(t))]

That is, the control signals from time t−τsc(t) to t−1which are obviously useless,
are discarded from FCS. As a result, the network-induced delay (data packet dropout
as well) in the backward channel will not affect the delay range that the packet-
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based control approach can handle. One can see that, both cases, with or without
the time synchronization, have very similar models (simply replace the round trip
delay related parameters in the aforementioned model to the forward channel delay
related ones in the presence of the time synchronization). Therefore without loss of
generality we will focus only on the system model in (5.6) in the following stability
and stabilization analysis.

5.2 Stability and Stabilization

In this section, switched system theory is applied to system S∗
c to derive a stability

criterion. To this end, we first evaluate the growth of the following Lyapunov function
candidate Vik (x(t)), t ∈ [t∗ik , t∗ik+1), k ≥ 1 defined by

Vik (x(t)) =xT (t)Pik x(t)

+
∫ t

t−ikϑ
xT (s)eα(s−t)Rik x(s)ds

+
∫ 0

−ikϑ

∫ t

t+θ

ẋ T (s)eα(s−t)Q1
ik ẋ(s)dsdθ

+
∫ −ikϑ

−(ik+1)ϑ

∫ t

t+θ

ẋ T (s)eα(s−t)Q2
ik ẋ(s)dsdθ

+
∫ 0

−(ik+1)ϑ

∫ t

t+θ

ẋ T (s)eα(s−t)Q3
ik ẋ(s)dsdθ.

Note that ik = 0 is a special case where R0 = 0, Q1
0 = 0, Q2

0 = 0. For simplicity
this case will not be specially addressed in the following analysis.

Lemma 5.1 For a given constant α > 0 and given feedback gain matrices K (ik),
if the following LMI-based problems are feasible,

Pik (α) :
⎧⎨
⎩

∃Pik > 0, Rik > 0, Qi
ik

> 0, Ni
ik
, i = 1, 2, 3,

s.t.
Ξik (α) < 0.

(5.7)

where

Ξik (α) =
(

Ξ ′
ik
(α) Ξ 5

ik∗ Ξ 6
ik

)
, (5.8)

Ξ ′
ik (α) =

(
Ξ 1

ik
(α) + Ξ 2

ik
+ (Ξ 2

ik
)T Ξ 3

ik∗ Ξ 4
ik
(α)

)
,
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Ξ 1
ik (α) =

⎛
⎝Ξ 11

ik
(α) 0 Ξ 13

ik∗ Ξ 22
ik

(α) 0
∗ ∗ 0

⎞
⎠ ,

Ξ 11
ik (α) = Pik A + AT Pik + αPik + Rik ,

Ξ 13
ik = Pik BK (ik),

Ξ 22
ik (α) = −e−αikϑRik ,

Ξ 2
ik = [N 1

ik + N 3
ik − N 1

ik + N 2
ik − N 2

ik − N 3
ik ],

Ξ 3
ik = [N 1

ik N 2
ik N 3

ik ],

Ξ4
ik

(α) = −diag{(ikϑ)−1e−αikϑQ1
ik

, ϑ−1e−α(ik+1)ϑQ2
ik

, ((ik + 1)ϑ)−1e−α(ik+1)ϑQ3
ik

},

Ξ 5
ik = [Q̄ik A 0 Q̄ik BK (ik) 0 0 0]T ,

Ξ 6
ik = −Q̄ik ,

Q̄ik = ikϑQ
1
ik + ϑQ2

ik + (ik + 1)ϑQ3
ik ,

then along the trajectory of the system in (5.6), the following inequality holds

Vik (x(t)) ≤ e−α(t−t∗ik )Vik (x(t
∗
ik )), t ∈ [t∗ik , t∗ik+1), k ≥ 1 (5.9)

Proof Note that for any Ni
ik
, i = 1, 2, 3, with appropriate dimensions we have

Γ 1
ik = ξT (t)N 1

ik [x(t) − x(t − ikϑ) −
∫ t

t−ikϑ
ẋ(s)ds] = 0 (5.10a)
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Γ 2
ik = ξT (t)N 2

ik [x(t − ikϑ) − x(t∗k − τ ∗
k ) −

∫ t−ikϑ

t∗k −τ ∗
k

ẋ(s)ds] = 0 (5.10b)

Γ 3
ik = ξT (t)N 3

ik [x(t) − x(t∗k − τ ∗
k ) −

∫ t

t∗k −τ ∗
k

ẋ(s)ds] = 0 (5.10c)

where ξ(t) = [xT (t), xT (t − ikϑ), xT (t∗k − τ ∗
k )]T .

Using (5.10) and noticing t − (ik + 1)ϑ < t∗k − τ ∗
k ≤ t − ikϑ for t ∈ [t∗ik , t∗ik+1)

we then obtain

V̇ik (x(t)) + αVik (x(t))

= 2xT (t)Pik ẋ(t) + xT (t)(αPik + Rik )x(t) − xT (t − ikϑ)e−αikϑRik x(t − ikϑ)

+ ẋ T (t)(ikϑQ
1
ik + ϑQ2

ik + (ik + 1)ϑQ3
ik )ẋ(t) −

∫ t

t−ikϑ
ẋ T (s)eα(s−t)Q1

ik ẋ(s)ds

−
∫ t−ikϑ

t−(ik+1)ϑ
ẋ T (s)eα(s−t)Q2

ik ẋ(s)ds −
∫ t

t−(ik+1)ϑ
ẋ T (s)eα(s−t)Q3

ik ẋ(s)ds

≤ 2xT (t)Pik ẋ(t) + xT (t)(αPik + Rik )x(t) − xT (t − ikϑ)e−αikϑRik x(t − ikϑ)

+ ẋ T (t)(ikϑQ
1
ik + ϑQ2

ik + (ik + 1)ϑQ3
ik )ẋ(t) −

∫ t

t−ikϑ
ẋ T (s)e−αikϑQ1

ik ẋ(s)ds

−
∫ t−ikϑ

t∗k −τ ∗
k

ẋ T (s)e−α(ik+1)ϑQ2
ik ẋ(s)ds −

∫ t

t∗k −τ ∗
k

ẋ T (s)e−α(ik+1)ϑQ3
ik ẋ(s)ds

+ 2Γ 1
ik + 2Γ 2

ik + 2Γ 3
ik

= ξT (t)(Ξ 1
ik + Ξ 2

ik + (Ξ 2
ik )

T + Ξ 7
ik + Ξ 8

ik )ξ(t) −
11∑
i=9

Ξ i
ik

where

Ξ 7
ik =

⎛
⎝ AT Q̄ik A 0 AT Q̄ik BK (ik)

∗ 0 0
∗ ∗ (BK (ik))T Q̄ik BK (ik)

⎞
⎠ ,

Ξ 8
ik = ikϑN

1
ik e

αikϑ(Q1
ik )

−1N 1
ik + ϑN 2

ik e
α(ik+1)ϑ(Q2

ik )
−1N 2

ik

+ (ik + 1)ϑN 3
ik e

α(ik+1)ϑ(Q3
ik )

−1N 3
ik ,

Ξ 9
ik =

∫ t

t−ikϑ
(Ξ 91

ik )T eαikϑ(Q1
ik )

−1Ξ 91
ik ,
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Ξ 91
ik = (N 1

ik )
T ξ(t) + e−αikϑQ1

ik ẋ(s),

Ξ 10
ik =

∫ t−ikϑ

t∗k −τ ∗
k

(Ξ 101
ik )T eα(ik+1)ϑ(Q2

ik )
−1Ξ 101

ik ,

Ξ 101
ik = (N 2

ik )
T ξ(t) + e−α(ik+1)ϑQ2

ik ẋ(s),

Ξ 11
ik =

∫ t

t∗k −τ ∗
k

(Ξ 111
ik )T eα(ik+1)ϑ(Q3

ik )
−1Ξ 111

ik ,

Ξ 111
ik = (N 3

ik )
T ξ(t) + e−α(ik+1)ϑQ3

ik ẋ(s).

Notice that Qi
ik

> 0, i = 1, 2, 3 implies Ξ 4
ik

< 0, Ξ 6
ik

< 0 and Ξ i
ik

≥ 0, i =
9, 10, 11. Then by Schur complements, Ξik (α) < 0 guarantees

(
Ξ 1

ik
+ Ξ 2

ik
+ (Ξ 2

ik
)T + Ξ 7

ik
Ξ 3

ik∗ Ξ 4
ik

)
< 0,

which furthermore guarantees Ξ 1
ik

+ Ξ 2
ik

+ (Ξ 2
ik
)T + Ξ 7

ik
+ Ξ 8

ik
< 0. Thus we obtain

V̇ik (x(t)) + αVik (x(t)) ≤ 0, t ∈ [t∗ik , t∗ik+1),∀k ≥ 1

Integrating this inequality then completes the proof.

Using Lemma 5.1, we then obtain the following stability criterion for the system
in (5.6), based on the average dwell time analysis [134].

Theorem 5.1 Suppose for the system in (5.6) the following inequality holds

ϑ > ϑ∗ (5.11)

where ϑ∗ = inf
α∈Ω

{ ln μα

α
} with μα = inf{μ|μ ≥ 1, Pik ≤ μPjk , Rik ≤ μR jk , Q

i
ik

≤
μQi

jk
, i = 1, 2, 3,∀ik, jk ∈ M}, Ω = {α|α > 0,Pik (α) feasible,∀ik ∈ M} and

M = {0, 1, 2, . . . , N − 1}. Then the system in (5.6) is exponentially stable.

Proof For any given α ∈ Ω , define for the system in (5.6) the following piecewise
Lyapunov functional

V (x(t)) = Vik (x(t)), t ∈ [t∗ik , t∗ik+1), k ≥ 1
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From Lemma5.1 the following inequality holds for t ∈ [t∗ik , t∗ik+1), k ≥ 1,

V (x(t)) = Vik (x(t)) ≤ e−α(t−t∗ik )Vik (x(t
∗
ik )) = e−α(t−t∗ik )V (x(t∗ik ))

The definition of μα implies that

Vik (x(t
∗
ik )) ≤ μαVik−1(x(t

∗−
ik

)),∀k ≥ 1, if ik ≥ �τ ∗
k

ϑ
� + 1,

or

Vik (x(t
∗
ik )) ≤ μαVīk−1

(x(t∗−
ik

)),∀k ≥ 2, if ik = �τ ∗
k

ϑ
�,

where īk−1 = max{ik−1|ik−1 satisfying (5.3)}.
Thus by iteration we obtain

V (x(t)) ≤ e−α(t−t∗1 )μIk−1
α V1(x(t

∗
1 )), t ∈ [t∗īk , t∗īk+1)

where V1(x(t∗1 )) is defined over [t∗1 , t∗1 + ϑ) and Ik = ∑
k

∑
ik

1. From Remark5.2, it

is readily seen that Ik − 1 = � (t−t∗1 )

ϑ
�, and thus

V (x(t)) ≤ e−(α− ln μα
ϑ )(t−t∗1 )V1(x(t

∗
1 )), t ∈ [t∗īk , t∗īk+1)

The definition of ϑ∗ implies that ∀ε > 0, ∃αε ∈ Ω and correspondingly μαε
such

that

ϑ∗ + ε >
ln μαε

αε

Choosing a sufficiently small ε = ε0 such that ϑ > ϑ∗ + ε0 yields

ϑ > ϑ∗ + ε0 >
ln μαε0

αε0

which implies

αε0 − ln μαε0

ϑ
> 0

Correspondingly, we obtain

V (x(t)) ≤ e−(αε0−
ln μαε0

ϑ )(t−t∗1 )V1(x(t
∗
1 )), t ∈ [t∗īk , t∗īk+1)
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which completes the proof following the same procedure as in, e.g., [134].

The following proposition solves the synthesis problem of the packet-based con-
trol approach to NCSs based on Theorem 5.1.

Proposition 5.1 Suppose for the system in (5.6) the following inequality holds,

ϑ > ϑ∗′
(5.12)

where ϑ∗′ = inf
β∈Ω ′{

ln μ′
β

β
} with μ′

β = inf{μ′|μ′ ≥ 1, Lik ≤ μ′L jk , Zik ≤ μ′Z jk ,Y
i
ik

≤
μ′Y i

jk
, i = 1, 2, 3,∀ik, jk ∈ M}, Ω ′ = {β|β > 0,Lik (β) feasible,∀ik ∈ M}, and

Lik (β) :
⎧⎨
⎩

∃Lik > 0, Zik > 0,Y i
ik

> 0, Mi
ik
, i = 1, 2, 3, Vik ,

s.t.
Πik (β) < 0.

where

Πik (β) =
(

Π ′
ik
(β) Π5

ik∗ Π6
ik

)
, (5.13)

Π ′
ik (β) =

(
Π1

ik
(β) + Π2

ik
+ (Π2

ik
)T Π3

ik∗ Π4
ik
(β)

)
,

Π1
ik (β) =

⎛
⎝Π11

ik
(β) 0 Π13

ik∗ Π22
ik

(β) 0
∗ ∗ 0

⎞
⎠ ,

Π11
ik (β) = ALik + Lik A

T + βLik + Zik ,

Π13
ik = BVik ,

Π22
ik (β) = −e−βikϑZik ,

Π2
ik = [M1

ik + M3
ik − M1

ik + M2
ik − M2

ik − M3
ik ],

Π3
ik = [M1

ik M2
ik M3

ik ],
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Π4
ik (β) = −diag{(ikϑ)−1e−βikϑY 1

ik ,ϑ
−1e−β(ik+1)ϑY 2

ik , ((ik + 1)ϑ)−1e−β(ik+1)ϑY 3
ik },

Π5
ik = [ALik 0 BVik 0 0 0]T ,

Π6
ik = −Lik (Ȳik )

−1Lik ,

Ȳik = ikϑY
1
ik + ϑY 2

ik + (ik + 1)ϑY 3
ik .

Then, the system in (5.6) is exponentially stabilizable by the control law K (ik) =
Vik L

−1
ik

, ik ∈ M.

Proof Pre- and post-multiply diag{P−1
ik

, P−1
ik

, P−1
ik

, P−1
ik

, P−1
ik

, P−1
ik

, Q̄−1
ik

} to (5.8)

and let Lik = P−1
ik

, Ȳik = Lik Q̄ik Lik , Zik = Lik Rik Lik , M
ik
i = Lik N

i
ik
Lik , Y

ik
i =

Lik Q
i
ik
Lik , i = 1, 2, 3, and Vik = K (ik)Lik . Then we complete the proof by using

Theorem 5.1.

It is noticed that the feasibility problem of Lik (β) is no longer LMI conditions
because of the term Π6

ik
. There are several techniques available to deal with this

difficulty, among which the cone complementarity technique is one of the most
commonly used [135]. In the following theorem, this technique is used to derive a
suboptimal solution forLik (β) by transforming the feasibility problem ofLik (β) to
a nonlinear minimization problem involving LMI conditions.

Theorem 5.2 Suppose (5.12) holds for the system in (5.6), where the feasibility
problem of Lik (β) is redefined to the following nonlinear minimization problem
involving LMI conditions,

L ′
ik (β) :

⎧⎨
⎩
Minimize Tr(Sik Tik + Lik Jik + ȲikUik )

Subject to Lik > 0, Zik > 0,Y i
ik

> 0, i = 1, 2, 3,
Ψ 1
ik

≤ 0, Ψ 2
ik

≥ 0, Ψ 3
ik

≥ 0, Ψ 4
ik

≥ 0, Ψ 5
ik

≥ 0.

where Ψ 1
ik

=
(

Π ′
ik
(β) Π5

ik∗ −Sik

)
, Ψ 2

ik
=

(
Tik Jik
∗ Uik

)
, Ψ 3

ik
=

(
Sik I
∗ Tik

)
, Ψ 4

ik
=(

Lik I
∗ Jik

)
, Ψ 5

ik
=

(
Ȳik I
∗ Uik

)
.

If the solution ofL ′
ik
(β) = 6n,∀ik ∈ M, then the system in (5.6) is exponentially

stabilizable by the control law defined in Proposition 5.1.

Proof Applying the cone complementarity technique proposed in [135] to (5.13) in
Proposition 5.1 then we complete the proof.
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5.3 A Numerical Example

Example 5.1 Consider the system in (5.1) with the following system matrices bor-
rowed from [64],

A =
⎛
⎝−1 0 −0.5

1 −0.5 0
0 0 0.5

⎞
⎠ , B =

⎛
⎝0
0
1

⎞
⎠ .

When the plant is sampled with h = 0.1s, it yields the following discretized
system

x(k + 1) =
⎛
⎝ 0.9048 0 −0.04881
0.09278 0.9512 −0.002419

0 0 1.051

⎞
⎠ x(k) +

⎛
⎝ −0.00246

−8.13 × e−5

0.1025

⎞
⎠ u(k).

Let d = 3, τ̄ = 0.6s, and thus τ̄d = 0.9s. Assume N = 3 which means one
data packet of the network can contain three steps of control signals. Applying
Theorem 5.2 we then obtain the following packet-based controllers with respect to
different network conditions,

K (0) = (
0.0200 0.0004 −1.3267

)
,

K (1) = (−0.0004 −0.0001 −1.0088
)
,

K (2) = (−0.0002 −0.0001 −1.0098
)
.

Notice here that the continuous network-induced delay (data packet dropout as
well) is discretized into three levels by ϑ = 0.3s, corresponding to the above three
different packet-based controllers. That is, for different delays, different controllers
apply.

The system response and the network-induced delay (data packet dropout as well)
is shown in Fig. 5.4 with the initial state x(t) = [−5 0 5]T , t ∈ [−0.9 0), which
illustrates the effectiveness of the packet-based control approach for NCSs in the
presence of network-induced delay, data packet dropout and data packet disorder
simultaneously. This can be compared with the example in [64] where only data
packet dropout and an unit step delay is considered.
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Fig. 5.4 Example 5.1. State response and communication constraints. The discretized delay and
dropout is obtained by ikϑ

5.4 Summary

By applying the discretization technique to the continuous network-induced delay,
the packet-based control approach was extended to the continuous time case in this
chapter, from which a novel model for NCSs was derived. The proposed approach
and the derived model can deal with network-induced delay, data packet dropout
and data packet disorder simultaneously as in the discrete time case in Chap.2 and
offer the designer the freedom of designing different controllers for different network
conditions. The stability criterion was obtained using switched system theory and
the stabilization problem was also solved, the effectiveness of which was illustrated
by a numerical example.
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Part II
Analysis

Built on the design framework of the packet-based control approach, this part fur-
ther discusses the theoretical analysis of the corresponding packet-based networked
control systems. This includes the stochastic modelling and analysis of packet-based
networked control systems in Chap. 6, a new stability analysis approach inspired
by the packet-based control approach in Chap. 7, and a comprehensive analysis
of the different delay effects in different channels in networked control systems in
Chap. 8. These analyses complete the theoretical foundation of the packet-based
control framework for networked control systems.
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Chapter 6
Stochastic Stabilization of Packet-Based
Networked Control Systems

In the previous chapters the communication constraints including network-induced
delay, data packet dropout and data packet disorder, are all assumed to be determin-
istic which, however, are actually stochastic in nature. This observation motivates
the study in this chapter on the stochastic stabilization of PBNCSs under the Markov
jump system framework, where the network-induced delay (data packet dropout as
well) in round trip is modeled as a homogeneous ergodic Markov chain. Under this
framework, the sufficient and necessary conditions for stochastic stability and sta-
bilization of PBNCSs are obtained, which can be compared with the deterministic
analysis in Chap.2 where only sufficient conditions to guarantee the closed-loop
stability are obtained and no stabilization analysis is given.

This chapter is organized as follows. The stochastic analysis of PBNCSs is pre-
sented in Sect. 6.1, covering the stochastic model of PBNCSs and the corresponding
stochastic stability and stabilization analysis. A numerical example is then given in
Sect. 6.2 to illustrate the validity of the theoretical analysis and Sect. 6.3 concludes
the chapter.

6.1 Stochastic Analysis of PBNCSs

Note that all the analysis in this chapter is based on the packet-based control approach
designed in Sect. 2.2; the reader is referred to Sect. 2.2 for more information on the
design details of the packet-based control approach and this chapter only focuses on
the corresponding stochastic analysis. It is noticed that the control law in (2.5) equals
that in (2.6) if K (τ ∗

k ) = K (τ ∗
sc,k, τ

∗
ca,k) which is generally true in practice. Thus for

simplicity only the closed-loop system with the control law in (2.6) (i.e., Algorithm
2.2) is analyzed in this chapter. The augmented closed-loop system of system Sd in
(2.1) with the control law in (2.6) was shown in (2.15) as follows,

X (k + 1) = �(τ ∗
k )X (k)

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2018
Y.-B. Zhao et al., Packet-Based Control for Networked Control Systems,
DOI 10.1007/978-981-10-6250-6_6
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where X (k) = [xT (k) xT (k − 1) · · · xT (k − τ̄ )]T ,

�(τ ∗
k ) =

⎛
⎜⎜⎜⎜⎜⎝

A · · · BK (τ ∗
k ) · · · · · ·

In 0
In 0

. . .
...

In 0

⎞
⎟⎟⎟⎟⎟⎠

,

and In is the identity matrix with rank n.
In this section, the stochastic model of the closed-loop system in (2.15) is first

obtained, which is then further analyzed to derive the stochastic stability and stabi-
lization conditions as follows.

6.1.1 Stochastic Model of PBNCSs

In NCSs, it is reasonable to model the round trip delay {τk; k = 0, 1, . . .} as a
homogeneous ergodic Markov chain [56]. Here in order to take explicit account of
data packet dropout, Markov chain {τk; k = 0, 1, . . .} is assumed to take values from
M = {0, 1, 2, . . . , τ̄ ,∞} where τk = 0 means no delay in round trip while τk = ∞
implies a data packet dropout in either the backward or the forward channel. Let the
transition probability matrix of {τk; k = 0, 1, . . .} be denoted by � = [λi j ] where

λi j = P{τk+1 = j |τk = i}, i, j ∈ M

P{τk+1 = j |τk = i} is the probability of τk jumping from state i to j , λi j ≥ 0 and

∑
j∈M

λi j = 1,∀i, j ∈ M

The initial distribution of {τk; k = 0, 1, . . .} is defined by

P{τ0 = i} = pi , i ∈ M

According to the comparison rule in (2.10), the round trip delay of the control
actions that are actually applied to the plant can be determined by the following
formula,

τ ∗
k+1 =

{
τ ∗
k + 1, if τk+1 > τ ∗

k ;
τ ∗
k − r, if τ ∗

k − r = τk+1 ≤ τ ∗
k .

(6.1)

The following lemma shows that the delay τ ∗
k in (6.1) that is derived from the

comparison rule in (2.10) is a Markov chain.
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Lemma 6.1 {τ ∗
k ; k = 0, 1, . . .} is a non-homogeneous Markov chain with state

space M∗ = {0, 1, 2, . . . , τ̄ } whose transition probability matrix �∗(k) = [λ∗
i j (k)]

is defined by

λ∗
i j (k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
l1∈M,l1≥i

πl1 (k)λl1 j

∑
l1∈M,l1≥i

πl1 (k)
, j ≤ i;

∑
l1∈M,l1≥i

∑
l2∈M,l2>i

πl1 (k)λl1l2

∑
l1∈M,l1≥i

πl1 (k)
, j = i + 1;

0, otherwise.

(6.2)

where π j (k) = ∑
i∈M

piλ
(k)
i j and λ(k)

i j is the k-step transition probability of τk from

state i to j .

Proof The comparison rule in (6.1) implies that the probability event {τ ∗
k = i} ∈

σ(τk, τk−1, . . . , τ1, τ0). Thus it is readily concluded that τ ∗
k is also a Markov chain

since τk as a Markov chain evolves independently. It is obvious that τ ∗
k can not be

∞ and thus its state space isM∗ = {0, 1, 2, . . . , τ̄ }. Furthermore, since {τ ∗
k = i} =

{τ ∗
k−1 = i − 1, τk > i − 1} ∪ {τ ∗

k−1 ≥ i, τk = i} we have
1. If j ≤ i , then

P{τ ∗
k+1 = j |τ ∗

k = i} = P{τk+1 = j |τ ∗
k = i}

= P{τk+1 = j |τk ≥ i}

=
∑

l1∈M,l1≥i
πl1(k)λl1 j

∑
l1∈M,l1≥i

πl1(k)

2. If j = i + 1, then

P{τ ∗
k+1 = j |τ ∗

k = i} = P{τk+1 > i |τ ∗
k = i}

= P{τk+1 > i |τk ≥ i}
=

∑
l2∈M,l2>i

P{τk+1 = l2|τk ≥ i}

=
∑

l1∈M,l1≥i

∑
l2∈M,l2>i

πl1(k)λl1l2

∑
l1∈M,l1≥i

πl1(k)

which completes the proof.
With Lemma 6.1, the closed-loop system in (2.15) can now be regarded as a

Markov jump system where the systemmatrix�(τ ∗
k ) evolves with the Markov chain

{τ ∗
k ; k = 0, 1, . . .} whose transition probability matrix is defined in (6.2).
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Remark 6.1 The data packet dropout is explicitly considered by including the state
τk = ∞ into the state space �; The data packet disorder is also considered by (6.1):
In our stochastic model the network-induced delay, data packet dropout and data
packet disorder are all considered simultaneously.

The following well-known result for homogeneous ergodic Markov chains is
required for the stochastic stability analysis in this chapter.

Lemma 6.2 ([136]) For the homogeneous ergodic Markov chain {τk; k = 0, 1, . . .}
with any initial distribution, there exists a limit probability distributionπ = {πi ;πi >

0, i ∈ M} such that for each j ∈ M,

∑
i∈M

λi jπi = π j ,
∑
i∈M

πi = 1

and

|πi (k) − πi | ≤ ηξk (6.3)

for some η ≥ 0 and 0 < ξ < 1.

Proposition 6.1 For N1 that is large enough and some nonzero η∗ the following
inequality holds

|λ∗
i j (k) − λ∗

i j | ≤ η∗ξk, k > N1

where �∗ = [λ∗
i j ] with

λ∗
i j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
l1∈M,l1≥i

πl1λl1 j

∑
l1∈M,l1≥i

πl1
, if j ≤ i;

∑
l1∈M,l1≥i

∑
l2∈M,l2>i

πl1λl1l2

∑
l1∈M,l1≥i

πl1
, if j = i + 1;

0, otherwise.

(6.4)

Proof It can be readily obtained from (6.2), (6.3) and (6.4).

6.1.2 Stochastic Stability and Stabilization

The following definition of stochastic stability is used in this chapter.

Definition 6.1 (Stochastic stability, see [56].) The closed-loop system in (2.15)
is said to be stochastically stable if for every finite X0 = X (0) and initial state
τ ∗
0 = τ ∗(0) ∈ M, there exists a finite W > 0 such that the following inequality
holds,
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E{
∞∑
k=0

||X (k)||2|X0, τ
∗
0 } < XT

0 WX0

where E{X} is the expectation of the random variable X .

Theorem 6.1 (Stochastic stability)The closed-loop system in (2.15) is stochastically
stable if and only if there exists P(i) > 0, i ∈ M∗ such that the following (τ̄ + 1)
LMIs hold

L(i) =
∑
j∈M∗

λ∗
i j�

T ( j)P( j)�( j) − P(i) < 0,∀i ∈ M∗ (6.5)

Proof Sufficiency. For the closed-loop system in (2.15), consider the following
quadratic function given by

V (X (k), k) = XT (k)P(τ ∗
k )X (k)

We have

E{�V (X (k), k)}
=E{XT (k + 1)P(τ ∗

k+1)X (k + 1)|X (k), τ ∗
k = i} − XT (k)P(i)X (k)

=
∑
j∈M∗

λ∗
i j (k + 1)XT (k)�T ( j)P( j)�( j)X (k) − XT (k)P(i)X (k)

=XT (k)[
∑
j∈M∗

λ∗
i j (k + 1)�T ( j)P( j)�( j) − P(i)]X (k)

From (6.5) we obtain

XT (k)[
∑
j∈M∗

λ∗
i j�

T ( j)P( j)�( j) − P(i)]X (k)

≤ − λmin(−L(i))XT (k)X (k)

≤ − β||X (k)||2

where β = inf{λmin(−L(i)); i ∈ M∗} > 0. Thus for k > N1,

E{�V (X (k), k)}
=XT (k)[

∑
j∈M∗

λ∗
i j (k + 1)�T ( j)P( j)�( j) − P(i)]X (k)

≤XT (k)[
∑
j∈M∗

λ∗
i j�

T ( j)P( j)�( j) − P(i)]X (k)

+ XT (k)
∑
j∈M∗

|λ∗
i j (k + 1) − λ∗

i j |�T ( j)P( j)�( j)X (k)
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≤ − β||X (k)||2 + η∗ξk+1XT (k)
∑
j∈M∗

�T ( j)P( j)�( j)X (k)

≤(αη∗ξk+1 − β)||X (k)||2

where α = sup{λmax(�
T ( j)P( j)�( j)); j ∈ M∗} > 0. Let N2 = inf{M; M ∈

N
+, M > max{N1, logξ

β
αη∗ − 1}}. Then we have for k ≥ N2

E{�V (X (k), k)} ≤ −β∗||X (k)||2

where β∗ = β − αη∗ξN2+1 > 0. Summing from N2 to N > N2 we obtain

E{
N∑

k=N2

||X (k)||2}

≤ 1

β∗ (E{V (X (N2), N2)} − E{V (X (N + 1), N + 1)})

≤ 1

β∗ E{V (X (N2), N2)}

which implies that

E{
∞∑
k=0

||X (k)||2} ≤ 1

β∗ E{V (X (N2), N2)} + E{
N2−1∑
k=0

||X (k)||2}

This proves the stochastic stability of the closed-loop system in (2.15) by Defin-
ition 6.1.

Necessity. Suppose the closed-loop system in (2.15) is stochastically stable, that
is,

E{
∞∑
k=0

||X (k)||2|X0, τ
∗
0 } < XT

0 WX0 (6.6)

Define

XT (n)P̄(N − n, τ ∗
n )X (n) = E{

N∑
k=n

XT (k)Q(τ ∗
k )X (k)|Xn, τ

∗
n }

with Q(τ ∗
k ) > 0. It is noticed that XT (n)P̄(N − n, τ ∗

n )X (n) is upper bounded from
(6.6) and non-decreasing as N increases since Q(τ ∗

k ) > 0. Therefore its limit exists
which is denoted by

XT (n)P(i)X (n) = lim
N→∞ XT (n)P̄(N − n, τ ∗

n = i)X (n) (6.7)
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Since (6.7) is valid for any X (n), we obtain

P(i) = lim
N→∞ P̄(N − n, τ ∗

n = i) > 0

Now consider

E{XT (n)P̄(N − n, τ ∗
n )X (n)

− XT (n + 1)P̄(N − n − 1, τ ∗
n+1)X (n + 1)|Xn, τ

∗
n = i}

=XT (n)[P̄(N − n, i) −
∑
j∈M∗

λ∗
i j (n + 1)�T ( j)P̄(N − n − 1, j)�( j)]X (n)

=XT (n)Q(i)X (n) (6.8)

Since (6.8) is valid for any X (n), we obtain

P̄(N − n, i) −
∑
j∈M∗

λ∗
i j (n + 1)�T ( j)P̄(N − n − 1, j)�( j)) = Q(i) > 0

Let N → ∞,

P(i) −
∑
j∈M∗

λ∗
i j (n + 1)�T ( j)P( j)�( j) > 0,∀n

Let n → ∞,

P(i) −
∑
j∈M∗

λ∗
i j�

T ( j)P(i)�( j) > 0

which completes the proof.

The stochastic stabilization result in Corollary 6.1 readily follows using the Schur
complement.

Corollary 6.1 (Stochastic stabilization) System Sd is stochastically stabilizable
using the packet-based control approach with the control law in (2.6) if and only
if there exist P(i) > 0, Z(i) > 0, K (i), i ∈ M∗ such that the following (τ̄ + 1)
LMIs hold

(
P(i) R(i)
RT (i) Q

)
> 0, i ∈ M∗

with the equation constraints

P(i)Z(i) = I,∀i ∈ M∗ (6.9)
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where R(i) = [(λ∗
i0)

1
2 �T (0) . . . (λ∗

i τ̄ )
1
2 �T (τ̄ )], Q = diag{Z(0) . . . Z(τ̄ )} and �(i)

(consequently K (i)) is defined in (2.15).

The LMIs in Corollary 6.1 with the matrix inverse constraints in (6.9) can be
solved using the Cone Complementarity Linearization (CCL) algorithm [137].

6.2 A Numerical Example

In this section, a numerical example is considered to illustrate the validity of Theorem
6.1 and Corollary 6.1.

Example 6.1 Consider the example in [56] where the systemmatrices are as follows,

A =

⎛
⎜⎜⎝
1.0000 0.1000 −0.0166 −0.0005

0 1.0000 −0.3374 −0.0166
0 0 1.0996 0.1033
0 0 2.0247 1.0996

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

0.0045
0.0896

−0.0068
−0.1377

⎞
⎟⎟⎠ .

This system is open-loop unstable with the eigenvalues at 1, 1, 1.5569 and 0.6423.
In the simulation, the random round trip delay is bounded by 4, i.e., τk ∈ M =
{0, 1, 2, 3, 4,∞}, with the transition probability matrix as follows,

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.1 0.2 0.2 0.3 0.2 0
0.2 0.2 0.2 0.2 0.1 0.1
0.24 0.06 0.48 0.12 0.1 0
0.15 0.25 0.3 0.15 0.1 0.05
0.3 0.3 0.2 0.1 0.1 0
0.3 0.3 0.15 0.15 0.1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The limit distribution of the above ergodic Markov chain can be simply obtained
as in Lemma 6.2,

π = (
0.1982 0.1814 0.3000 0.1738 0.1198 0.0268

)
.

�∗ in Proposition 6.1 can then be calculated by (6.4) as

�∗ =

⎛
⎜⎜⎜⎜⎝

0.1982 0.8018 0 0 0
0.2224 0.1767 0.6008 0 0
0.2290 0.1699 0.3612 0.2398 0
0.2186 0.2729 0.2501 0.1313 0.1271
0.3000 0.3000 0.1909 0.1091 0.1000

⎞
⎟⎟⎟⎟⎠

.
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Fig. 6.1 Example 6.1. States
evolution of the packet-based
control approach to NCSs
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From Corollary 6.1, the packet-based controller is obtained as follows,

K (0) = (
0.5292 0.6489 22.4115 2.8205

)
,

K (1) = (
0.3792 0.8912 20.2425 5.3681

)
,

K (2) = (
0.0499 0.4266 15.6574 5.7322

)
,

K (3) = (−0.4400 −0.3003 9.2976 5.0540
)
,

K (4) = (−0.8400 −1.3422 2.7723 2.9173
)
.

The state trajectories of the closed-loop system under the packet-based controller
are shown in Fig. 6.1 with the initial states x(−3) = x(−2) = x(−1) = x(0) =
[0 0.1 0 − 0.1]T , which illustrates the stochastic stability of the closed-loop system.

6.3 Summary

It is observed that the communication constraints inNCSs including network-induced
delay, data packet dropout and data packet disorder, are stochastic in nature. Based
on this observation, a stochastic analysis was presented for the packet-based control
approach proposed in Chap.2. Both stochastic stability and stabilization conditions
were obtained, which was then validated by a numerical example.
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Chapter 7
Stability of Networked Control Systems:
A New Time Delay Systems Approach

A large number of research works on Networked Control Systems (NCSs) are from
the time delay system perspective, however, it is noticed that the description of the
network-induced delay is too general to represent the practical reality. By recognizing
this fact, a novel time delay system model for NCSs is thus obtained by depicting
the network-induced delay more specifically, inspired by the packet-based control
approach. Based on this model, stability (robust stability) and stabilization results
are obtained using delay-dependent analysis approach, which are less conservative
compared with conventional models due to the specific description of the network-
induced delay in the new model. A numerical example illustrates the effectiveness
of the proposed approach.

This chapter is organized as follows. In Sect. 7.1, we first present the novel model
for NCSs, based on which the stability and stabilization results are then obtained
in Sect. 7.2. A numerical example is considered to illustrate the effectiveness of the
proposed approach in Sects. 7.3 and 7.4 concludes the chapter.

7.1 The Novel Time Delay System Model for PBNCSs

Consider the NCSs setup illustrated in Fig. 2.1, where τsc,k and τca,k are the network-
induced delays in the sensor-to-controller and the controller-to-actuator channels,
respectively, and the plant is represented by the following discrete-time linear model
with the full state information measurable,

x(k + 1) = Ax(k) + Bu(k) (7.1)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

m is the control input, A ∈ R
n×n, B ∈

R
n×m are constant system matrices.
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We first discuss the control law based on the packet-based control approach for
completeness; a simpler discussion can be found in Sect. 2.2.1. For simplicity, in this
chapter the network-induced delays in the sensor-to-controller and the controller-to-
actuator channels are not considered separately but only the round trip delay is of
interest, which is denoted by τk at time k, i.e., τk = τsc,k + τca,k . Using conventional
modeling approaches, the control law for the system in (7.1) is typically obtained as

u(k) = Kx(k − τk) (7.2)

where the feedback gain K is fixed for all the network conditions. In view of the
time-varying network conditions, a more reasonable control law is of the following
form,

u(k) = K (τk)x(k − τk) (7.3)

where the feedback gain K (τk) is designed with respect to different network con-
ditions and thus gives the system designer more freedom to compensate for the
communication constraints.

In the system models in both (7.2) and (7.3), the round trip delay τk is typically
assumed to be time-varying and upper bounded. This assumption is generally true in
practice as well as necessary in theory. However, this assumption can readily result
in a situation where for some specific time k ′,

k ′ + 1 − τk ′+1 < k ′ − τk ′

The above inequality means that, the control action at time k ′ + 1 is based on
the outdated state information at time k ′ + 1 − τk ′+1 instead of the more updated
information at time k ′ − τk ′ which is already available for the actuator. This control
strategy is obviously unacceptable in practice.

By recognizing this defect in conventional models for NCSs, we thus have the
following reasonable assumption for the network-induced delay in NCSs, denoted
by τ ∗

k to distinguish from τk in (7.2) and (7.3),

τ ∗
k+1 ≤ τ ∗

k + 1,∀k (7.4)

where τ ∗
k is time-varying and upper bounded, i.e., τ ∗

k ∈ Ω � {2, . . . , τ̄ }. τ ∗
k is not less

than 2 due to the fact that there is at least one step delay in both the sensor-to-controller
and the controller-to-actuator channels respectively. Notice that the condition in (7.4)
is not naturally held for conventional control approaches to NCSs but can be readily
realized in practice by the packet-based control approach.

The control law in (7.3) can now be rewritten as

u(k) = K (τ ∗
k )x(k − τ ∗

k ) (7.5)
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where τ ∗
k satisfies (7.4).

Based on the control law in (7.5), the closed-loop system for the NCS in (7.1)
with the assumption in (7.4) can be represented by

x(k + 1) = Ax(k) + BK (τ ∗
k )x(k − τ ∗

k ) (7.6)

where τ ∗
k satisfies (7.4) and the feedback gains K (τ ∗

k ) are to be designed. This model
is different fromconventionalmodels available in the literature inmainly two aspects:
(1) the assumption for the network-induced delay in (7.4); (2) the delay-dependent
feedback gains K (τ ∗

k ). Based on this model, stability and stabilization analysis is
then conducted in the following section which results in less conservative conditions
compared with those with conventional models. Another case in the presence of the
following time-varying uncertainties will also be considered within this framework,

x(k + 1) = (A + ΔA(k))x(k) + (B + ΔB(k))K (τ ∗
k )x(k − τ ∗

k ) (7.7)

where the time-varying parameter uncertainties are norm-bounded, i.e.,

[ΔA(k) ΔB(k)] = DE(k)[FA FB] (7.8)

with D, FA and FB being known constant matrices and

ET (k)E(k) ≤ I

7.2 Stability and Stabilization

In this section, the stability of the nominal system in (7.6) is first considered. The
result obtained is then extended to the case with time-varying parameter uncertainties
in (7.7). Furthermore, a stabilized controller design method is also obtained in terms
of LMIs.

The following stability theorem for the closed-loop system in (7.6) can be obtained
based on delay-dependent analysis.

Theorem 7.1 Given λ ≥ 1. The closed-loop system in (7.6) is stable if there exist

Pi = PT
i > 0, Qi = QT

i > 0, Ri = RT
i > 0, Si =

(
S11i S12i

(S12i )T S22i

)
≥ 0, T 1

i , T
2
i with

appropriate dimensions such that

1. ∀i ∈ Ω ,

Φi =
⎛
⎝Φ11

i Φ12
i (A − I )T Hi

∗ Φ22
i (BK (i))T Hi

∗ ∗ −Hi

⎞
⎠ < 0 (7.9)
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90 7 Stability of Networked Control Systems: A New Time Delay Systems Approach

Ψi =
⎛
⎝ S11i S12i T 1

i∗ S22i T 2
i

∗ ∗ 1
λ
Ri

⎞
⎠ ≥ 0 (7.10)

2. ∀i, j ∈ Ω

Pi ≤ λPj , Qi ≤ λQ j , Ri ≤ λR j (7.11)

where

Φ11
i = (λ − 1)Pi + Qi + 2λPi (A − I ) + T 1

i + (T 1
i )T + i S11i ,

Φ12
i = λPi BK (i) − T 1

i + (T 2
i )T + i S12i ,

Φ22
i = −T 2

i − (T 2
i )T + i S22i ,

Hi = λPi + τ̄ Ri .

Proof Let

z(l) = x(l + 1) − x(l)

Then

x(k) − x(k − τ ∗
k ) −

k−1∑
l=k−τ ∗

k

z(l) = 0

Define the following Lyapunov functional where we suppose at time k, τ ∗
k =

i ∈ Ω ,

Vi (k) = V 1
i (k) + V 2

i (k) + V 3
i (k)

with

V 1
i (k) = xT (k)Pi x(k)

V 2
i (k) =

k−1∑
l=k−τ ∗

k

xT (l)Qτ ∗
l
x(l)
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V 3
i (k) =

0∑
m=−τ̄+1

k−1∑
l=k+m−1

zT (l)Rτ ∗
l
z(l)

Define ΔVi (k) = Vτ ∗
k+1

(k + 1) − Vi (k). Then along the trajectory of the system
in (7.6), we have

ΔV 1
i (k) =xT (k + 1)Pτ ∗

k+1
x(k + 1) − xT (k)Pi x(k)

≤(λ − 1)xT (k)Pi x(k) + 2λxT (k)Pi z(k) + λzT (k)Pi z(k) (7.12)

due to (7.11),

ΔV 2
i (k) =

⎛
⎝ k−1∑

l=k−τ ∗
k+1+1

−
k−1∑

l=k−τ ∗
k

⎞
⎠ xT (l)Qτ ∗

l
x(l) + xT (k)Qi x(k) ≤ xT (k)Qi x(k)

(7.13)

due to (7.4), and

ΔV 3
i (k) =

0∑
m=−τ̄+1

(
k∑

l=k+m

−
k−1∑

l=k+m−1

)
zT (l)Rτ ∗

l
z(l)

=τ̄ zT (k)Ri z(k) −
k−1∑

l=k−τ̄

zT (l)Rτ ∗
l
z(l)

≤τ̄ zT (k)Ri z(k) −
k−1∑

l=k−τ ∗
k

zT (l)Rτ ∗
l
z(l) (7.14)

Notice that

z(k) = (A − I )x(k) + BK (i)x(k − τ ∗
k ) (7.15)

and

Ri ≥ 1

λ
R j , Qi ≥ 1

λ
Q j ,∀i, j ∈ Ω (7.16)

In addition, we have for any T 1
i , T

2
i with appropriate dimensions,

2[xT (k)T 1
i + xT (k − τ ∗

k )T 2
i ] × [x(k) − x(k − τ ∗

k ) −
k−1∑

l=k−τ ∗
k

z(l)] = 0 (7.17)

and for any Si with appropriate dimensions,
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iζT
1 (k)Siζ1(k) −

k−1∑
l=k−τ ∗

k

ζT
1 (k)Siζ1(k) = 0 (7.18)

where ζ1(k) = [xT (k) xT (k − τ ∗
k )]T .

From (7.12)–(7.18) we then obtain

ΔVi (k) ≤ ζT
1 (k)Ξiζ1(k) − 1

λ

k−1∑
l=k−τ ∗

k

ζT
2 (k, l)Ψiζ2(k, l) (7.19)

where Ξi =
(

Φ11
i + Υ 11

i Φ12
i + Υ 12

i∗ Φ22
i + Υ 22

i

)
, Υ 11

i = (A − I )T Hi (A − I ), Υ 12
i =

(A − I )T Hi BK (i), Υ 22
i = (BK (i))T Hi BK (i), Hi = λPi + τ̄ Ri , and ζ2(k, l) =

[ζT
1 (k), zT (l)]T . It is noticed that the system is stable if Ξi < 0 and Ψi ≥ 0. Further-

more, noticing that by Schur complement that Ξi < 0 is equivalent to Φi < 0, we
then complete the proof.

Remark 7.1 In [117], a typical discrete-time system with time-varying state delay
was considered, where the Lyapunov functional was constructed with an additional
item being (using the notations in this chapter)

V 4
i =

3∑
m=−τ̄+2

k−1∑
l=k+1−m

xT (l)Qτ ∗
l
x(l)

This item was included mainly to cancel out the first item of the difference of
ΔV 2

i (k) in (7.13), since the value of (
∑k−1

l=k−τ ∗
k+1+1 −∑k−1

l=k−τ ∗
k
)xT (l)Qτ ∗

l
x(l) can not

be estimated without the assumption in (7.4) and thus can not be dropped directly
as done in this chapter. In [133], the Lyapunov functional used in [117] was further
improved by adding another new item to eliminate the negative effect brought by the
introduction of V 4

i . However, without using the item V 4
i in our Lyapunov functional,

a less complex result is obtained in this chapter which is also less conservative since
no such inequalities are used in the proof. On the other hand, in a recent article [138],
a similar delay systemwas considered in the switched system context, which derived
a very similar model to that used in this chapter. The aforementioned additional item
in the Lyapunov functional V 4

i was still used, and for the reduction of the coupling
under the switched system context, common Q and R were used in the Lyapunov
functional which obviously led to conservativeness compared with the result in this
chapter.

Based on Theorem 7.1, a robust stability theorem can then be obtained for the
closed-loop system with time-varying uncertainties in (7.7).

Theorem 7.2 Given λ ≥ 1 and the feedback gains K (i), i ∈ Ω . The closed-
loop system with time-varying uncertainties in (7.7) is robust stable if there exist
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Pi = PT
i > 0, Qi = QT

i > 0, Ri = RT
i > 0, Si =

(
S11i S12i

(S12i )T S22i

)
≥ 0, T 1

i , T
2
i with

appropriate dimensions and a scalar γ > 0 such that

1. ∀i ∈ Ω ,

⎛
⎜⎜⎝

Φ11
i + γFT

A FA Φ12
i + γFAFBK (i) (A − I )Hi Pi D

∗ Φ22
i + γ(FBK (i))T FBK (i) (BK (i))T Hi 0

∗ ∗ −Hi Hi D
∗ ∗ ∗ −γ I

⎞
⎟⎟⎠ < 0

(7.20)

Ψi ≥ 0 (7.21)

2. ∀i, j ∈ Ω ,

Pi ≤ λPj , Qi ≤ λQ j , Ri ≤ λR j (7.22)

where Φ11
i , Φ12

i , Φ2
i , Ψi , Hi are defined in Theorem 7.1 and D, FA, FB are defined

in (7.8).

Proof The above theorem can be obtained following a standard analysis for sys-
tems with time-varying parameter uncertainties, as done in Theorem 7.3 in [117].
Therefore we omit the technical details for brevity.

Based on Theorem 7.1, the following stabilized controller design method can also
be obtained in terms of LMIs.

Theorem 7.3 Given λ ≥ 1. The system in (7.6) is stabilizable if there exist Li =
LT
i > 0, Wi = WT

i > 0, Mi = MT
i > 0, Xi =

(
X11
i X12

i
(X12

i )T X22
i

)
≥ 0, Y 1

i , Y
2
i , Vi

with appropriate dimensions such that

1. ∀i ∈ Ω ,

Πi =

⎛
⎜⎜⎝

Π11
i Π12

i λL(A − I )T τ̄ L(A − I )T

∗ Π22
i λ(BVi )

T τ̄ (BVi )
T

∗ ∗ −λLi 0
∗ ∗ ∗ −τ̄Mi

⎞
⎟⎟⎠ < 0 (7.23)

Σi =
⎛
⎝ X11

i X12
i Y 1

i∗ X22
i Y 2

i

∗ ∗ 1
λ
Li M

−1
i Li

⎞
⎠ ≥ 0 (7.24)
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2. ∀i, j ∈ Ω ,

Li ≤ λL j , Mi ≤ λMj ,Wi ≤ λWj (7.25)

where

Π11
i = (λ − 1)Li + Wi + 2λ(A − I )Li + Y 1

i + (Y 1
i )T + i X11

i ,

Π12
i = λBVi − Y 1

i + (Y 2
i )T + i X12

i ,

Π22
i = −Y 2

i − (Y 2
i )T + i X22

i .

Furthermore, the control law is defined in (7.5) with K (i) = Vi L
−1
i .

Proof The condition in (7.9) in Theorem 7.1 can be reformed as

⎛
⎜⎜⎝

Φ11
i Φ12

i λ(A − I )T Pi τ̄ (A − I )T Ri

∗ Φ22
i λ(BK (i))T Pi τ̄ (BK (i))T Ri

∗ ∗ −λPi 0
∗ ∗ ∗ −τ̄ Ri

⎞
⎟⎟⎠ < 0 (7.26)

Pre- and Post multiply (7.26) and (7.10) by diag(P−1
i , P−1

i , P−1
i , R−1

i ) and
diag(P−1

i , P−1
i , P−1

i ), respectively, and let Li = P−1
i ,Mi = R−1

i ,Wi = P−1
i Qi P

−1
i ,

Xi = diag(Pi , Pi ) · Si ·diag(Pi , Pi ), Yi = P−1
i Ti P

−1
i , Vi = K (i)P−1

i . We then com-
plete the proof.

Theorem 7.3 provides a way to design a stabilized controller for NCSs in (7.6).
However, the condition in (7.24) in Theorem 7.3 is no longer LMI conditions due to
the term Li M

−1
i Li . To dealwith this difficulty, the cone complementarity technique is

used in this chapter to derive a suboptimal solution for (7.24) [135], by transforming
the problem to a minimization problem involving LMI conditions.

Corollary 7.1 Given λ ≥ 1. Define the following nonlinear minimization problem
involving LMI conditions for i ∈ Ω ,

Pi :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Minimize Tr(Zi Ri + Li Pi + Mi Qi )

Subject to (7.23), (7.25), Li = LT
i > 0,Wi = WT

i > 0,

Mi = MT
i > 0, Xi =

(
X11
i X12

i
(X12

i )T X22
i

)
≥ 0,

Σ
′
i ≥ 0,Θ1

i ≥ 0,Θ2
i ≥ 0,Θ3

i ≥ 0,Θ4
i ≥ 0.

(7.27)
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where Σ
′
i =

⎛
⎝ X11

i X12
i Y 1

i∗ X22
i Y 2

i
∗ ∗ 1

λ
Zi

⎞
⎠, Θ1

i =
(
Ri Pi
∗ Qi

)
,Θ2

i =
(
Zi I
∗ Ri

)
,Θ3

i =
(
Li I
∗ Pi

)
,Θ4

i =
(
Mi I
∗ Qi

)
.

If the solution of Pi = 3n,∀i ∈ Ω , the system in (7.6) is then stabilizable with
the control law defined in Theorem 7.3.

For the detailed algorithm based on Corollary 7.1, the reader is referred to
[135, 138].

7.3 An Illustrative Example

Example 7.1 Consider an inverted pendulum systemwith delayed control input, first
discussed in [133]. The discretized model for the system with the sampling period
of 30ms was given by

x(k + 1) =
(
1.0078 0.0301
0.5202 1.0078

)
x(k) +

(−0.0001
−0.0053

)
u(k),

and a state feedback gain was obtained in [133] as K = [102.9100 80.7916], which
is fixed for all network conditions.

In this example, let τ̄ = 12 and thus the network-induced delay in the round
trip is time-varying within the range [2 12]. In order to generate the delay sequence
satisfying (7.4), a random delay sequence {τk, k ≥ 1} is first produced within the
range [2 12], which is then modified to obtain {τ ∗

k , k ≥ 1} according to (7.4). This
is done by (1) let τ ∗

1 = τ1; (2) for k > 1, if τk+1 > τ ∗
k + 1 then let τ ∗

k+1 = τ ∗
k + 1;

let τ ∗
k+1 = τk+1 otherwise. It is worth mentioning that this process of generating

the round trip delay sequence {τ ∗
k , k ≥ 1} represents the reality in practical NCSs

where only the latest information is used. A typical delay sequence of {τ ∗
k , k ≥ 1} is

illustrated in Fig. 7.1, where it is seen that the growth rate of the round trip delay is
upper bounded by the dashed lines with their slopes being 1.

Using Corollary 7.1, the following feedback gains are obtained with respect to
different round trip delays,
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Fig. 7.1 The round trip
delay τ∗

k which satisfies (7.4)

τ

Fig. 7.2 The state responses
using conventional control
approach and the control
approach in this chapter
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⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

133.1456 32.2599
132.1299 31.9383
132.0470 31.9097
132.2548 31.9475
131.9716 31.8689
132.3325 31.9662
132.1224 31.8954
132.1417 31.9062
132.1821 31.9203
132.1446 31.9008
131.9822 31.8532

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The state responses with the control approaches in [133] and in this chapter are
illustrated in Fig. 7.2, where it is shown that the system is unstable using the conven-
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tional approach in [133] whereas the control approach in this chapter can efficiently
stabilize the system. This is due to two reasons. Firstly, the stabilized controller
design method proposed in this chapter takes clear account of the delay constraint in
(7.4). Secondly, the use of the time-dependent feedback gains in our model brings
more freedom in designing the control law.

7.4 Summary

By recognizing the reality that only the latest information is used in practical NCSs,
a new time delay system model for NCSs is proposed. This model takes account
of both the specific characteristics of the network-induced delay in practical NCSs
and the time-dependent feedback gain scheme. Stability and stabilization results are
obtained based on this model in which less complex Lyapunov functional is used due
to the new model. A numerical example illustrates the effectiveness of the proposed
approach.
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Chapter 8
Exploring the Different Delay Effects
in Different Channels in Networked
Control Systems

The sensor-to-controller and the controller-to-actuator delays in networked control
systems are investigated for the first time with respect to their different effects on
the system performance. The study starts with identifying the delay-independent
and delay-dependent control laws in networked control systems, and confirms that
only two delay-dependent control laws can cause different delay effects in different
channels. The conditions under which the different delays in different channels can
cause different effects, are then given for both delay-dependent control laws. The
results are verified by numerical examples. Potentially these results can be regarded
as important design principles in the practical implementation of networked control
systems.

This chapter is organized as follows. The problem is formulated in Sect. 8.1. Exist-
ing control laws are then categorized in Sect. 8.2. The delay effects with respect to
different categories of control laws are analyzed both qualitatively and quantitatively
in Sect. 8.3. The obtained results are verified by numerical examples in Sects. 8.4 and
8.5 concludes the chapter.

8.1 Problem Formulation

One of themost distinct characteristics in NCSs is the network-induced delay, caused
by the imperfect data transmission in NCSs. Most available works do not distinguish
between the delay in either the sensor-to-controller or the controller-to-actuator chan-
nel, meaning that the majority of the existing models of NCSs simply assume those
two delays affect the system performance in the same way. Although this assump-
tion seems naturally true, further clarifications are necessary before regarding it as a
general principle: Is it universally true that the delays in both channels are identical
with respect to their effects on the system performance? This question is important
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since, although the answer of “yes” could confirm the correctness of existing results,
the possible answer of “no” will put all these existing results in an awkward position
and open the gate for a more appropriate modeling approach to NCSs.

The first difficulty in answering the raised question is how the concerned system
performance can be quantitatively represented in terms of different delays in different
channels. This is addressed by defining an error of the control signals involving the
different delays in different channels. Based on this definition, the concerned question
can then be formulated appropriately.

Consider the typical system setting of NCSs illustrated in Fig. 2.1. Two delays
exist in this system setting, i.e., the sensor-to-controller delay, α, and the controller-
to-actuator delay, β, respectively. We assume that the delays are upper bounded, i.e.,

0 ≤ α ≤ τ̄sc, 0 ≤ β ≤ τ̄ca

and consequently, 0 ≤ τ ≤ τ̄ .
In order to focus mainly on the delay effects rather than the plant dynamics, the

following linear nominal system model for the plant is adopted,

x(k + 1) = Ax(k) + Bu(k) (8.1)

where x ∈ R
n , u ∈ R

m , A ∈ R
n×n and B ∈ R

n×m .
The following is an immediate observation from Fig. 2.1, which however is the

foundation of our analysis on the different delay effects in NCSs: It is the different
control laws that may cause different delay effects in NCSs. More specifically, the
delay effects on the evolution of the system in (8.1) entirely rely on how the control
signal u(k) is obtained, as only u(k) is directly affected by the delays (this will be
more evident afterwards when we categorize existing control laws). This observation
enables us to focus mainly on the analysis of different control laws in NCSs.

Given a control law, define the difference of the control signals between the one
with sensor-to-controller delay α and controller-to-actuator delay β (denoted by
uτ (k : α,β)) and the one without any delay (denoted by u0(k)), to be

eτ (k : α,β) := |uτ (k : α,β) − u0(k)| (8.2)

Since u0(k) is the control action achievable without any delay, eτ (k : α,β) can
thus be interpreted as a measure of how different delays in different channels would
affect the ability of the system to achieve this desirable control action u0(k). Based
on eτ (k : α,β) we are able to give the index to evaluate the delay effects in different
channels, as follows.

Definition 8.1 Given a control law (consequently the way of calculating the control
signal u(k)). The control law is said to be “different-channel-delay-independent”
(DCDI) if at any specific time k, for any fixed τ and any combinations of α and β
satisfying τ = α + β,
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eτ (k : α,β) = constant

The control law is said to be “different-channel-delay-dependent” (DCDD)
otherwise. Furthermore, “the degree of the DCDD dependence” is measured by
eτ (k : α,β). For τ = α1 + β1 = α2 + β2 and α1 > α2, if

eτ (k : α1,β1) > eτ (k : α2,β2)

the sensor-to-controller delay α is said to be affecting the system performance more
severely, and vice versa.

Based on Definition 8.1, the general question raised in the Introduction section
can then be stated as: 1. Are all the control laws in NCSs DCDI? 2. If there exists a
control law to be DCDD, then what is the degree of its DCDD dependence?

8.2 Categorizing the Control Laws

It is realized that the system performance defined in Definition 8.1 is entirely depen-
dent on the choice of the control laws. The existing control laws are therefore cate-
gorized as the necessary preparation for further analysis.

8.2.1 Two General Categories of the Control Laws

For simplicity of analysis, we concentrate merely on static state feedback for the
system in (8.1). Two categories of control laws are observed, referred to as the
“delay-independent” and “delay-dependent” control laws, respectively.

• Delay-independent control laws. This category of control laws can be seen in most
conventional control methods, the general form of which can be written as follows,

u(k) = Kx(k − τ ) (8.3a)

where K is the constant feedback gain and plenty ofmethods have been proposed to
design it [66, 139, 140]. Although the control signal in (8.3a) is still dependent on
the round trip delay τ , the controller (feedback gain) is designed “independently”
from the delay.

• Delay-dependent control laws. A general form of the control laws belonging to
this category can be written as follows,

u(k) = Kkx(k − τ ) (8.3b)
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where the feedback gain Kk is essentially time-varying and delay-dependent. Note
that a specific delay-dependent control law may not be expressed explicitly in the
form of (8.3b), i.e., the delay-dependent control law is defined in the “equivalent”
sense: whatever the specific form of a control law is, it is delay-dependent if and
only if it is not delay-independent. See for example the control law in (8.4a) which
is defined later.

8.2.2 The Delay-Dependent Control Laws

The delay-dependent law given in (8.3b) is only of its general form. It can be imple-
mented in practice via several different control strategies, and one of the most impor-
tant control strategies is the packet-based control approach.

In the early development of PBNCSs [107], the controller is designed using a
model based control method. The idea is to first “estimate”, or “predict” the current
system state from the delayed sensing data and then use a constant feedback gain.
We refer to this design method as the “prediction-based” approach and the control
law can be written as

u(k) = K x̂(k|k − τ ) (8.4a)

where x̂(k|k − τ ) is the predicted state at time k based on the state at time k − τ .
The more general packet-based control law is given as follows,

u(k) = Kτ x(k − τ ) (8.4b)

where the feedback gain Kτ is dependent on the round trip delay τ . In the absence
of time synchronisation, the control law may be defined by

u(k) = Kα,βx(k − τ ) (8.4c)

where the feedback gain Kα,β is dependent on both the sensor-to-controller delay, α
and the controller-to-actuator delay, β.

8.3 When and How the Delay Effects in Different Channels
Are Different

Based on the definition of the system performance index in Sect. 8.1 and the cate-
gorization of existing control laws in NCSs in Sect. 8.2, we are now able to analyze
the delay effects in different channels. A qualitative analysis is firstly conducted to
clarify which categories of control laws are DCDI (DCDD) and then a quantitative
analysis is conducted for the DCDD control laws.
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8.3.1 When the Delay Effects Are Different: A Qualitative
Analysis

A qualitative analysis of the delay-independent control law in (8.3a) and the delay-
dependent control laws in (8.4a) (8.4b) (8.4c) leads to the following Proposition.

Proposition 8.1 1. The delay-independent control law in (8.3a) and the delay-
dependent control law in (8.4b) are DCDI;

2. The delay-dependent control laws in (8.4a) and (8.4c) are typically DCDD;

Proof Notice that for any given k and τ , uτ (k : α,β) remains to be constant for both
control laws in (8.3a) and (8.4b). The first part of the Proposition is thus correct by
(8.2) and Definition 8.1.

As for the control law in (8.4c), uτ (k : α,β) is varying with Kα,β and is thus typ-
ically different for different combinations of α and β, since otherwise, it degenerates
to the control law in (8.4b).

The predicted system state in the control law in (8.4a) is usually designed based
on a model of the plant. This design procedure presents two factors that would affect
the predicted system state, that is, the model inaccuracy and the error occurred in
the model prediction. The sensor-to-controller and the controller-to-actuator delays
are related to these two factors in different ways (which will be more evident in the
quantitative analysis in Sect. 8.3.2.1), meaning that these two delays typically present
different delay effects for the system.

Remark 8.1 As for the control law in (8.4a), itmakes a difference in termsof the delay
effects whenever a model-based controller is designed for the system. This means
that besides the packet-based control approach, other model-based methods could
also suffer from different delay effects for different sensor-to-control and controller-
to-actuator delays, such as the approaches proposed in [141, 142]. On the other
hand, the idea of using delay-dependent feedback gains has also been seen in other
models used for NCSs, see, e.g., [56], despite the missing of the practical design
support. Clearly the results obtained here and in what follows are also applicable to
these models. This observation implies that the formulated problem and the obtained
results are widely applicable to a large number of NCSs.

8.3.2 How the Delay Effects with (8.4a) and (8.4c) are
Different: A Quantitative Analysis

The second part of Proposition 8.1, i.e., the different delay effects caused by the
control laws in (8.4a) and (8.4c), are addressed quantitatively in this section. These
obtained results provide important design principles for the practical implementation
of NCSs.
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8.3.2.1 The Prediction-Based Approach in (8.4a)

The design of the control law in (8.4a) can be various due to the different predictive
methods used to obtain x̂(k|k − τ ). Examples of this variance can be seen in [107]
for a model-based approach and in [37] for a receding horizon based approach. In
what follows a quantitative analysis is done for the case in [107], whereas other cases
can be analyzed similarly.

The fundamental idea of predicting the state x̂(k|k − τ ) in [107] is to use an
estimated plant model at the controller side, which can give the predicted states
based on delayed state information. The model used can be written as

x̂(k + 1) = Âx̂(k) + B̂û(k) (8.5)

where Â and B̂ are not equivalent to A and B in (8.1) in general due to the modeling
error. Furthermore, the control signals û(k) may not be the same as the real ones,
u(k), since the latter is usually not fully accessible to the controller.

Notice that k in (8.4a) is the time at the actuator side. The time when the FCS is
calculated at the controller side is thus k − β and the FCS is calculated based on the
delayed state information at time k−τ . The prediction-based approach estimates the
state x̂(k|k − τ ) based on the available delayed state x(k − τ ), using the following
two steps.

1. Estimate from x̂(k−τ+1|k−τ ) to x̂(k−β|k−τ ). In this step it is assumed that the
real control signals applied to the plant from u(k−τ ) to u(k−β−1) are available
to the controller, that is, û(k − τ + i) = u(k − τ + i), i = 0, 1, . . . ,β + 1. It is
realized later that this assumption is difficult to be implemented in practice and
a better approach is proposed to deal with this difficulty [143]. However in this
chapter we keep this assumption unchanged for simplicity of analysis. Based on
this assumption and the predictive model in (8.5), the dynamics of the predictive
model can be written as

x̂(k − τ + i |k − τ )

= Âx̂(k − τ + i − 1|k − τ ) + B̂u(k − τ + i − 1), i = 1, . . . ,α (8.6)

where x̂(k − τ |k − τ ) = x(k − τ ). This yields

x̂(k − β|k − τ ) = Âαx(k − τ ) +
α∑

j=1

Âα− j B̂u(k − τ + j − 1) (8.7)

2. Estimate from x̂(k − β + 1|k − τ ) to x̂(k|k − τ ). In this step the control signal is
assumed to be given by û(k−β+ i) = u(k−β+ i |k−τ ) = K x̂(k−β+ i |k−τ ),
as the real ones are clearly not available. Based on this assumption, the predictive
model in (8.5) turns to be
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x̂(k − β + i |k − τ ) = ( Â + B̂K )x̂(k − β + i − 1|k − τ ), i = 1, . . . ,β
(8.8)

which gives

x̂(k|k − τ ) = ( Â + B̂K )β x̂(k − β|k − τ ) (8.9)

As state feedback with a constant feedback gain is used in (8.4a), eτ (k : α,β)

in (8.2) can thus be evaluated equivalently by the difference between the estimated
state, x̂(k|k − τ ) and the real one, x(k|k − τ ) = x(k), i.e.,

e(k|k − τ ) := x(k|k − τ ) − x̂(k|k − τ )

By (8.1) x(k|k − τ ) is given by

x(k|k − τ ) = Aτ x(k − τ ) +
τ∑

j=1

Aτ− j Bu(k − τ + j − 1) (8.10)

which is based on the state at time k − τ .
From (8.7), (8.9) and (8.10) e(k|k − τ ) can be explicitly expressed, which in

general is a function of the sensor-to-controller delay,α, (or the controller-to-actuator
delay, β) given the fixed round trip delay, τ ,

e(k|k − τ ) = Γτ ,K (α) (8.11)

Although it is possible to investigate the explicit expression of e(k|k−τ ) in (8.11)
directly, it is too complicated to derive any valuable results. As the main purpose
of the chapter is to study the effects in the presence of different delays in different
channels, it is thus possible to study the effects indirectly from two different dynamics
of e(k|k−τ ), based on (8.6) and (8.8). On the basis of this observation, the following
result is obtained.

Proposition 8.2 With the use of the prediction-based control law in [107], the
sensor-to-controller delay,α, affects the system performance less than the controller-
to-actuator delay, β, provided the predictive model in (8.5) is sufficiently precise.

Proof In order to demonstrate the above result, the error dynamics e(k|k − τ ) is
analysed based on the aforementioned two steps in the prediction-based approach.
From k − τ to k − β, the error dynamics is obtained for i = 1, . . . ,α, as follows,
based on (8.6) and (8.10),

eα(i) := e(k − τ + i |k − τ )

= (A − Â)x(k − τ + i − 1|k − τ ) + Âe(k − τ + i − 1|k − τ )

+ (B − B̂)u(k − τ + i − 1) (8.12)
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with e(k − τ |k − τ ) = 0.
On the other hand, from k − β + 1 to k, the error dynamics is obtained for

j = 1, . . . ,β, based on (8.8) and (8.10), as follows,

eβ( j) := e(k − β + j |k − τ )

= (A − Â − B̂K )x(k − β + j − 1|k − τ ) + Bu(k − β + j − 1)

+ ( Â + B̂K )e(k − β + j − 1|k − τ ) (8.13)

It is noticed that the error eα(·) is purely dependent on the sensor-to-controller
delay, α, and is accumulated with the increase of α. On the other hand, although
eβ(·) is mainly affected by the controller-to-actuator delay, it is also affected by the
sensor-to-controller delay, since its initial state, e(k−β|k− τ ), is obtained in (8.12).

Now suppose we have an exact model of the plant, i.e., A = Â, B = B̂. It
immediately follows that eα(i) ≡ 0, i = 1, . . . ,α, and in particular the initial state
for (8.13), e(k − β|k − τ ) = eα(α) = 0. Therefore, in this case the sensor-to-
controller delay does not affect the system performance at all. On the other hand, it
is readily seen that eβ(i) �= 0 in general and will accumulate with the increase of
β. Based on this observation, it is therefore fair to claim the statement made in this
proposition.

Remark 8.2 Proposition 8.2 implies that, under certain conditions, it can result in a
better system performance to place the controller as close to the actuator as possible,
if the system allows us to do so. In this sense Proposition 8.2 has its practical guid-
ance value. However, Proposition 8.2 is based on the nominal system and it could be
wrong in the presence of large model inaccuracy, measurement error, or any other
type of uncertainties in the system. Indeed, as stated in the proof, the sensor-to-
controller delay affects both eα(·) and eβ(·) while the controller-to-actuator delay
affects only eβ(·). Therefore, if the system setting allows the sensor-to-controller
delay to take effect, it is very likely that this delay could affect the system perfor-
mance more severely than that of the controller-to-actuator delay. This implies that
Proposition 8.2 has its rigid conditions of applicability.

8.3.2.2 The Delay-Dependent Gain Based Approach in (8.4c)

Unlike the prediction-based approach in (8.4a) where the prediction of the current
system state plays an essential role, the delay effects in the delay-dependent gain
based approach in (8.4c) are purely dependent on the time-varying feedback gains.
In order to specify eτ (k : α,β) in (8.2), we consider, for given round trip delay, τ ,
the unit error with respect to the delay in the sensor-to-controller channel, α,

Δeα := ||Kα+1,β−1 − Kα,β ||||x(k − τ )|| = ΔKα||x(k − τ )|| (8.14)

and the unit error with respect to the delay in the controller-to-actuator channel, β,
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Δeβ := ||Kα−1,β+1 − Kα,β ||||x(k − τ )|| = ΔKβ ||x(k − τ )|| (8.15)

where || · || is the norm of ·, ΔKα = ||Kα+1,β−1 − Kα,β || and ΔKβ = ||Kα−1,β+1 −
Kα,β ||.

Recalling (8.4c), it is noticed that Kα,βx(k − τ ) = u(k) is the control signal
actually applied to the plant at time k. Δeα (Δeβ) can thus be interpreted as the
difference between u(k) and the control signal produced by increasing (decreasing) a
unit delay in the sensor-to-controller channel and meanwhile decreasing (increasing)
a unit delay in the controller-to-actuator channel. Therefore, to a certain extent Δeα

(Δeβ) is able to quantitatively measure the delay effects in the sensor-to-controller
(controller-to-actuator) channel: The larger Δeα (Δeβ) is, the more the delay in the
sensor-to-controller (controller-to-actuator) channel affects the system performance.
This fact is stated in the following Proposition.

Proposition 8.3 In the delay-dependent gain based approach in (8.4c), the effects of
the delays in the sensor-to-controller channel and the controller-to-actuator channel
are proportional to ΔKα and ΔKβ , respectively.

Remark 8.3 Notice that for the control law in (8.4b), for any given round trip delay
the feedback gain remains fixed. This implies that for any given round trip delay, τ ,

Kτ = Kα+1,β−1 = Kα−1,β+1,∀α + β = τ

Therefore, in a certain sense the delay effects of the control law in (8.4b) can be
deduced from Proposition 8.3.

Remark 8.4 It can be often seen in practice that either ΔKα > ΔKβ or ΔKα <

ΔKβ is met by almost all round trip delays with only a few exceptions. In this
case we should be confident to conclude that the sensor-to-controller delay or the
controller-to-actuator delay plays more essential role than its counterpart although
this conclusion can not be obtained directly from Proposition 8.3. In this sense the
conditions in Proposition 8.3 can be too rigid to be actually applied in practice. To
deal with this issue, we define the following global gain error, Kα and Kβ , based on
the partial gain error, ΔKα and ΔKβ , respectively,

Kα :=
∑

τ

∑

α+β=τ

ΔKα (8.16)

Kβ :=
∑

τ

∑

α+β=τ

ΔKβ (8.17)

It is seen that Kα and Kβ are the sum of ΔKα and ΔKβ over all possible delays.
Therefore, the former can be an effective measure for the delay effects in a global
sense. Proposition 8.3 can also be modified accordingly to represent this global
measure.
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Table 8.1 The different delay effects in NCSs

Controller category Which delay more affects the
performance?

Implementation considerations

(8.3a) and (8.4b) No differencea N.A.

(8.4a) The controller-to-actuator
delayb

Minimize the
controller-to-actuator delayc

(8.4c) Dependent on different
controller gainsd

Adjust the control structure
accordinglye

aProposition 8.1; bProposition 8.2; cRemark 8.2; dProposition 8.3 and Remark 8.4; eRemark 8.5

Remark 8.5 Proposition 8.3 has its guidance value in the practical implementation
of NCSs. After the feedback gains in (8.4c) have been designed, ΔKα and ΔKβ in
(8.14) and (8.15), and consequently the different delay effects, can then be determined
by Proposition 8.3. The practical implementation can then be adjusted accordingly
in favor of the system performance.

8.3.3 A Brief Summary and Discussion

Weare now able to summarize the points scattered all over the chapter on the different
delay effects in NCSs in Table8.1.

Table8.1 tells us that if the controller in a specific NCS is designed using a control
law belonging to the controller category in (8.3a) or (8.4b), the sensor-to-controller
and the controller-to-actuator delays are identical in terms of their effects on the
system performance; However, if otherwise the control law belongs to the controller
category in (8.4a) or (8.4c), the sensor-to-controller and the controller-to-actuator
delays can possibly affect the system performance in different ways. As regards the
practical implementing, we may therefore try to decrease as much as possible the
delay which deteriorates the system performance more if the system allows us to do
so. This can be served as an important design principle in the implementation of any
NCSs.

8.4 Numerical Examples

Two numerical examples are considered to verify the conclusions made in the last
section, regarding the delay effects of the prediction-based approach (Example 8.1)
and the delay-dependent gain based approach (Example 8.2), respectively. All the
simulations that follows are done using MATLAB.

Example 8.1 Consider the system in (8.1) with the following system matrices bor-
rowed from [107],
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A =
⎛

⎝
1.010 0.271 −0.488
0.482 0.100 0.240
0.002 0.3681 0.7070

⎞

⎠ , B =
⎛

⎝
5 5
3 −2
5 4

⎞

⎠

As in [107], the initial state is set as x0 = [0.1 0.1 0.1]T and the constant feedback
gain is given by

K =
(

0.5858 −0.1347 −0.4543
−0.5550 0.0461 0.4721

)

Different from the system setting in [107], it is assumed that the system states of
the above system can be obtained exactly and therefore the measurement system and
the observer are not necessary. The control signal is assumed to be zero before the
arrival of the first FCS. In addition, in order to focus on the delay effects in different
channels, the delays are all set to be time-invariant.

The simulations of the above system prove the statement made in Proposition
8.2 and Remark 8.2. Under the same round trip delay, τ̄ = 3, Fig. 8.1 shows that
the system is stable with τca = 1 while unstable with τca = 2. This proves the
result in Proposition 8.2, that is, the smaller the controller-to-actuator delay is, the
better the system performance will be. Further examples can be seen in Figs. 8.2
and 8.3. With τca = 1 and τsc = 1 respectively, the system is stable even with
τsc = 12 (Fig. 8.2) while only stable for τca < 2 (Fig. 8.3). This clearly shows that
the sensor-to-controller delay has a less negative effect on the system performance. In
order to simulate the delay effects in the presence of the modeling error, a particular
case is shown in Fig. 8.4, where the inaccurate system matrices are defined as Â =
(1+ ε)A and B̂ = (1− ε)B with ε = 0.16. For this particular case it shows that the
sensor-to-actuator delay could affect the system performance more severely. This
proves the statement made in Remark 8.2. However, it is worth pointing out that
with inaccurate models, the sensor-to-actuator delay could still be possible to affect
the system performance more lightly. This implies that with the modeling error in
presence, the delay effects in different channels are complicated and no general
results exist.

Example 8.2 Consider the same system as in Example 8.1 but with the control law
in (8.4c). In order to consider the different delay effects in this case we redefine the
upper bounds of the delay as τ̄sc = τ̄ca = 2 and thus τ̄ = 4. The delay-dependent
feedback gains are then designed based on a receding horizon approach, as proposed
in [37],

⎛

⎝
K0,0

K0,1

K0,2

⎞

⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎝

−0.0312 −0.0822 −0.1719
−0.1446 0.0568 0.2801
0.0583 −0.0172 −0.0976

−0.1591 0.0427 0.2559
0.0474 −0.0128 −0.0765

−0.1253 0.0338 0.2020

⎞

⎟⎟⎟⎟⎟⎟⎠
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Fig. 8.1 Example 8.1. State responses with different delays in different channels
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Fig. 8.2 Example 8.1. State responses with the same controller-to-actuator delay
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Fig. 8.4 Example 8.1. State responses in the presence of modeling error
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⎛

⎝
K1,0

K1,1

K1,2

⎞

⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎝

−0.1333 0.0018 0.1319
−0.0772 0.0191 0.1235
0.0085 −0.0027 −0.0147

−0.0290 0.0073 0.0455
0.0087 −0.0022 −0.0137

−0.0230 0.0059 0.0363

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎝
K2,0

K2,1

K2,2

⎞

⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎝

−0.1629 0.0137 0.1890
−0.0256 0.0053 0.0405
0.0010 −0.0006 −0.0024

−0.0104 0.0022 0.0152
0.0030 −0.0006 −0.0045

−0.0081 0.0017 0.0120

⎞

⎟⎟⎟⎟⎟⎟⎠

As for the above delay-dependent gains, there is no general conclusion whether
ΔKα > ΔKβ or ΔKα < ΔKβ . The global gain error is then calculated by (8.16),
which turns to be Kα = 0.0763 and Kβ = 0.1688. This indicates that in general the
controller-to-actuator delay, β, affects the system performance more than the sensor-
to-controller delay, α. This conclusion is verified by the state responses shown in
Fig. 8.5, where the increase of the controller-to-actuator delay rapidly destabilizes
the system, showing the more important role played by the controller-to-actuator
delay.
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Fig. 8.5 Example 8.2. State responses with different delays in different channels

ybzhao@zjut.edu.cn



8.5 Summary 113

8.5 Summary

Delays play an important role in networked control systems. It is revealed for the first
time that delays in different channels can possibly affect the system performance in
very different ways. By categorizing existing control laws, qualitatively and quanti-
tatively analyzing their roles in determining the delay effects in different channels,
conditions and criteria are given to determine which delay can be more important
under various conditions. These results can serve as important design principles in
the practical implementation of networked control systems.
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Part III
Extension

The packet-based control approach is based on the packet-based transmission in
networked control systems. This part considers more communication characteristics
in networked control systems and proposes corresponding solutions, including data
packet disorder in Chap. 9, the reduction of the communication resource usage at the
sensor side (Chap. 10) and at the controller side (Chap. 11), and the scheduling of
the communication resource usage in Chap. 12, and so forth. These works are still
within the packet-based control framework, but have greatly expanded the regime of
the framework.
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Chapter 9
Active Compensation for Data Packet
Disorder in Networked Control Systems

Data packet disorder often occurs in Networked Control Systems which however
has not been taken into account in most literature to date. In this chapter the cause
and effect of data packet disorder are analyzed and an active compensation scheme
is proposed to compensate for it. The proposed scheme is flexible to admit all the
existing control approaches to be used, and also derives a novel closed-loop system
model of NCSs which enables more reasonable and effective theoretical analysis of
NCSs. The effectiveness of the proposed active compensation scheme is illustrated
by a numerical example.

This chapter is organized as follows. In Sect. 9.1, we first analyze how data packet
disorder occurs and then review the related work in this area. The active compensa-
tion scheme for data packet disorder is then presented in Sect. 9.2, which derives a
novel system model for NCSs. A numerical example is also considered in Sect. 9.4,
which illustrates the effectiveness of the proposed scheme. Section9.5 concludes the
chapter.

9.1 Data Packet Disorder and Related Work

In NCSs, the plant is controlled over some communication network by the con-
troller. Due to the communication network inserted into the control system, network-
induced delay is inevitable in NCSs, denoted by τsc(t) and τca(t) for the delays in
the sensor-to-controller channel and controller-to-actuator channel respectively. The
plant dynamics, in general, is described by the following differential equation,

ẋ(t) = f (x(t), u(t)) (9.1)

where u is the control input to the plant. In this chapter, the sensor is assumed to be
time-driven whereas the controller and the actuator are event-driven, as assumed in
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[88]. “Time-driven” for the sensor in this chapter implies an independent, constant
time interval h between which the plant dynamics is sampled and the “event-driven”
controller and actuator are trigged by newly arrived data (sampled data or control
signals) but not at specific time instants.

9.1.1 Data Packet Disorder

Let us consider the typical data transmission process in NCSs illustrated in Fig. 9.1
and define “round trip delay” for a sampled data packet to be the time interval from
sampling the system states to the control signal based on this sampled data being
applied to the plant. Generally round trip delay consists mainly of two transmission
delays: sensor-to-controller delay and controller-to-actuator delay, whereas in this
chapter all the other potential delays such as computation delay of the controller are
considered as part of the round trip delay, that is, round trip delay is the total delay
in the system.

The time-driven sensor sends its sampled data every h seconds, as illustrated
in Fig. 9.1 at time instants t sk−1 and t sk respectively. However, due to the arbitrary
network-induced delay, the sampled data packet sent at time instant t sk−1 does not
necessarily arrive at the actuator earlier than its subsequent data packet sent at time
instant t sk . This occurs when, for example in Fig. 9.1, τk−1 − τk11 > h. Based on this
analysis, Proposition 9.1 readily follows.

Proposition 9.1 Given a constant sampling period h and arbitrarily variable
network-induced delays, data packet disorder occurs if and only if

Δτm = τmax − τmin > h (9.2)

where τmax and τmin are the upper and lower bounds of the round trip delay.

Fig. 9.1 Illustrating how data packet disorder occurs
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Proof On the one hand, data packet disorder occurs when the round trip delays for
the sampled data packet sent at time instants t sk−1 and t

s
k in Fig. 9.1 are τmax and τmin

respectively provided (9.2) holds; On the other hand, if Δτm ≤ h then data packet
sent at time instant t sk will never arrive at the actuator earlier than the one sent at time
instant t sk−1, that is, no data packet disorder occurs.

Remark 9.1 If data packet disorder occurs in an NCS then we can conclude that
(9.2) holds for this NCS; On the contrary, if (9.2) holds for an NCS, Proposition
9.1 implies that data packet disorder will inevitably occur for a certain data packet
after the NCS runs for a sufficient long time but it does not mean every data packet
will experience disorder in this case. From this point of view, it is readily seen that
Proposition 9.1 is still valid in the presence of data packet dropout.

9.1.2 Related Work

If no special treatment is taken, the existence of data packet disorder will produce
a situation where, older information is used instead of latest information available.
Take Fig. 9.1 as an example where we assume the sampled data packet sent at time
instant t sk arrives at the actuator at time instant tak11 (data packet disorder occurs in this
case). According to conventional approaches without compensating for data packet
disorder, the control signal based on sampled data at time instant t sk will be used
between tak11 and tak−1 whereas after t

a
k−1 the control signal based on older sampled

data at time instant t sk−1 will be used. This is obviously unreasonable and seriously
degrades the system performance.

A possible solution for data packet disorder is the packet-based control approach.
Though effective, the requirement of sending a sequence of forward control signals
simultaneously in a single data packet may not be always available in NCSs, which
thus restricts the application of this approach for certain conditions.

From the perspective of conventional TDS theory, there are still no effective
approaches to deal with this issue to date. For example, in [88, 144] the following
closed-loop system model for NCSs with a linear plant model was obtained,

ẋ(t) = Ax(t) + Bu(t) (9.3a)

u(t) = Kx(ikh), t ∈ [ikh + τk, ik+1h + τk+1), k ≥ 1 (9.3b)

where ikh and ik+1h were the sampling time instants and the relationship ik+1 > ik
was not required, that is, no compensation scheme for data packet disorder was
considered. In [145], a similar model was considered and even the authors noticed
that data packet disorder may occur, they unfortunately assumed ik+1 > ik artificially
without providing any supportive designmethod. Similar situations can also be found
in other works, for example, in [139, 146–148].
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9.2 Actively Compensating for Data Packet Disorder
in NCSs

In this section, an active compensation scheme for data packet disorder in NCSs is
presented. As mentioned earlier, the derived system model considers the commu-
nication constraints in NCSs including network-induced delay, data packet dropout
and data packet disorder simultaneously, compared with previously reported results
where data packet disorder is excluded.

The schematic structure of the active compensation scheme for NCSs is illustrated
in Fig. 9.2, which is seen to be distinct from conventional control systems in two
aspects: the Time Stamp Generator (TSG) at the sensor side and the Control Action
Selector (CAS) at the controller side.

As implied by the name, TSG is used to label each sampled data packet with a
“time stamp” which contains the information of the corresponding sampling time
instant of the sampled data packet. This time stamp remains in the control data packet
after the control signal is calculated based on the sampled data, thus enabling the
sampling time instant based on which each control data packet is calculated to be
known by the CAS module in Fig. 9.2. This information is then used by CAS to
actively compensate for data packet disorder.

CAS consists of a register and a logic comparator. The register is used to store only
a single step of the control signal with the corresponding time stamp as mentioned
above. When a control data packet arrives, the logic comparator compares the time
stamps of both the newly arrived control data packet and the one already in the register
of CAS, and only the latest control data packet is stored after the comparison process
and then applied to the plant. In this way, the introduction of CAS can effectively
deal with data packet disorder in NCSs with the help of TSG. For example, suppose
in Fig. 9.1 that the control data packet based on sampled data at time instant t sk
arrives at the actuator at time instant tak11. Then at time instant tak−1 when the control
data packet based on sampled data at time instant t sk−1 arrives, CAS knows that the
newly arrived control data packet is calculated based on older sampled data and thus

Fig. 9.2 The schematic structure of the active compensation scheme for NCSs
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will discard this control data packet and the register of CAS remains unchanged.
Thus, CAS avoids the existence of the aforementioned situation where older control
action instead of the latest available is applied to the plant, that is, CAS successfully
eliminates the effect of data packet disorder in NCSs.

Suppose the kth control data packet that arrives at the actuator successfully is
based on the ik th sampled data packet, and its corresponding round trip delay is
τk . Then the sampled data packet based on which the kth “effective” control data
packet is applied to the plant after the comparison process can be determined by the
following comparison rule,

Pi∗k =
{
Pi∗k−1

, if i∗k−1 > ik ′ ;
Pik′ , otherwise.

(9.4)

where the control data packet Pi∗k−1
which is based on sampled data at time instant

i∗k−1h is already in the register of CAS and Pik′ which is based on ik ′ just arrives at
CAS.

Based on the above analysis, the algorithm of the active compensation scheme
can now be summarized as follows.

Algorithm 9.1 Active compensation for data packet disorder
S1. The sensor samples the system dynamics.
S2. TSG labels the sampled data with the time stamp and sends the sampled data packet over the
network to the controller.
S3. The controller receives the sampled data packet and calculates the corresponding control
signal which is then sent to the actuator with the time stamp.
S4. CAS compares the time stamps of the newly arrived control data packet and the one already
in the register of CAS by (9.4). The latest control data packet is then sent to the actuator and also
stored in the register.
S5. The control action from CAS is applied to the plant.

Using the proposed active compensation scheme, data packet disorder inNCSs can
now be effectively dealt with. From the schematic structure in Fig. 9.2 and Algorithm
9.1, it is readily seen that this scheme additionally inserts two modules, namely TSG
andCAS, into the control systembut does notmodify the original control components
in the system, that is, the sensor, the controller and the actuator. This design approach
therefore enables all the existing conventional control approaches to be applied to
this control structure without any modification whilst data packet disorder can be
effectively dealt with. This flexibility enables the proposed scheme to be readily
deployed in practice.

Remark 9.2 It is noticed that data packet disorder may occur in both sensor-to-
controller and controller-to-actuator channels, and the proposed active compensation
scheme can effectively deal with data packet disorder no matter in which channel
data packet disorder occurs. However, the existence of data packet disorder in the
sensor-to-controller channel makes it unnecessary to calculate the control signal at
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certain time instants. For example, in Fig. 9.1, if the sampled data packet sent at time
instant t sk arrives at the controller at time instant t ck1, then the calculation of control
signal based on sampled data at time instant t sk−1 (which arrives at the controller
at time instant t ck−1) is unnecessary since this control action will definitely not be
used by the actuator (actually it will be discarded by CAS). To deal with this issue,
a Sampled Data Selector (SDS) similar to CAS, can be deployed at the controller
side. SDS also consists of a register and a logic comparator like CAS, which can
be used in a similar way to determine the latest sampled data. The controller will
work as normal if the newly arrived sampled data packet contains the latest system
information; otherwise the controller will be idle. In this way, the use of SDS is
able to reduce both the computation burden of the controller and the communication
burden in the controller-to-actuator channel without affecting the deployment of the
active compensation scheme.

9.3 Modeling and Further Discussion

In this section, we show that the active compensation scheme derives a unified model
for NCSs which can take the communication constraints including network-induced
delay, data packet dropout and data packet disorder into account simultaneously. We
further point out that the active compensation scheme also reduces the communica-
tion constraints in NCSs which is thus beneficial for the control performance.

9.3.1 A Unified Model for NCSs

With the active compensation scheme proposed in the last section, the control law
for the plant in (9.1) can be obtained as follows,

u(t) = g(x(i∗k h)), t ∈ [t∗k , t∗k+1), k ≥ 1 (9.5)

where i∗k is defined in (9.4), τ ∗
k is the round trip delay with respect to i∗k and t∗k �

τ ∗
k + i∗k h.
Compared with the system model in (9.3), where the sequence of the sampling

time instants {ikh : k = 1, 2, . . .} can be decreasing, in the above system model, we
can guarantee that the sequence of the sampling time instants {i∗k h : k = 1, 2, . . .}
is increasing which implies that the effect of data packet disorder is effectively
eliminated in this model.

It is worth mentioning that the control law in (9.5) has already taken data packet
dropout into account since there is no more constraint on the increasing sequence
{i∗k h : k = 1, 2, . . .}. Therefore, the systemmodel in (9.1) and (9.5) canbe regarded as
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a unified model for NCSs, which considers the communication constraints including
network-induced delay, data packet dropout and data packet disorder simultaneously.

9.3.2 Further Discussion: Reduced Communication
Constraints

It is observed that the active compensation scheme for data packet disorder not only
effectively eliminates the negative effects of data packet disorder, but also modifies
the characteristics of the communication constraints to the system as well. This can
be observed in the following two aspects.

9.3.2.1 Reduced Delay Increase Rate

With the active compensation scheme, it is noticed that at t∗k + h, the worst case
would be using the control signal at time t∗k which implies no new control signals
arrive during (t∗k , t∗k + h). On the other hand, using a new control signal at t∗k + h can
only decrease the actual delay τ ∗

k from the worst case. In view of this fact, we have
the following relationship

τt∗k +h ≤ τ ∗
k + h (9.6)

where τt∗k +h denotes the round trip delay of the system at time t∗k +h. This fact further
implies that the actual delay to the system can not grow too fast, i.e., during any time
interval (t1, t2), the actual delay can only increase as much as Δ � t2 − t1. This
constraint on the delay increase rate does not exist in conventional models for NCSs
and can potentially be used to derive less conservative controller design methods for
NCSs.

9.3.2.2 Reduced Delay Bound

It is well know that burst traffic often occurs in Internet-based data transmission,
which implies that in practice network-induced delay with large lower and upper
bounds usually varies for the most time within a narrow range of relatively small
delays. For such a case, designing a controller with respect to these large bounds is
clearly conservative. Fortunately, it is noticed that the active compensation scheme
can effectively reduce the actual delay bound, since it discards those data packets
with a sudden change in delay. For example, in the NCS test rig used in [37], the
round trip delay is bounded in 2–8 sampling periods, while for most of the time
(above 80%) the delay is constrained to two values, i.e., 4 and 5 sampling periods.
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Using the active compensation scheme, the delay bound can be effectively narrowed
to 3–6 sampling periods which is certainly beneficial for the control performance,
for now we can design the controller for a narrow delay bound.

From the above analysis, it is seen that the active compensation scheme is more
like a communication protocol rather than a control strategy, since this scheme has
effectively reduced the communication constraints but does not affect the control
structure itself. In this sense, while the use of this scheme could contribute greatly
to improve the system performance, as shown in the next section, the analysis of the
control performance such as stability, stabilization, robustness, etc., can still be done
separately based on the unified model in (9.1) and (9.5), for which there are plentiful
results in the literature [139, 145, 146]. Therefore we exclude such analysis in this
chapter.

9.4 A Numerical Example

Example 9.1 Consider the following continuous-time linear system borrowed from
[35], which has also been studied in, for example, [88, 145],

ẋ(t) =
(
0 1
0 −0.1

)
x(t) +

(
0
0.1

)
u(t) (9.7)

In the following simulation, we use the same state feedback gain as designed in
[35], that is, K = [−3.75 − 11.5] and the plant is sampled with a constant period
h = 0.04 s. The lower and upper bounds of the round trip delay are first set as
τmin = 0.24 s and τmax = 1.6 s respectively, and both channels are assumed to have
the same upper and lower bounds (0.12 s and 0.8 s respectively).

According to the analysis in Sect. 9.1, data packet disorder inevitably occurs in
this case and, without compensation old information might be used instead of latest
information available. However, with the active compensation scheme proposed in
Sect. 9.2, it is seen from Fig. 9.3 that the sampling time instants based on which the
control actions are applied (that is, i∗k h) are non-decreasing, which implies that data
packet disorder has been effectively dealt with.

The system state responses of both with the active compensation scheme and
without it are illustrated in Fig. 9.4, which proves the effectiveness of the proposed
approach. Another case is also considered in Fig. 9.5, where the upper bound of the
round trip delay is increased to τmax = 2.4 s with τmin remaining unchanged. In this
case, it is seen that the system is still stable in the presence of the active compensation
scheme while unstable without it.
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Fig. 9.3 The relationship between simulation time t and i∗k h in (9.5), which shows data packet
disorder has been effectively dealt with

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1

1.5

Time (s)

Sy
st

em
 s

ta
te

 e
vo

lu
tio

n

With compensation
Without compensation

Fig. 9.4 The active compensation scheme results in a better system performance where
τmax = 1.6 s
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Fig. 9.5 The active compensation scheme maintains the stability of the closed-loop system where
τmax = 2.4 s

9.5 Summary

Network-induced delay in NCSs has been widely explored in literature to date,
while unfortunately the effect of data packet disorder is often neglected, despite
its frequent presence in NCSs. In this chapter, the cause and effect of data packet
disorder in NCSs are investigated in detail, and an active compensation scheme is
also proposed to deal with the negative effect. The derived novel model for NCSs
within this framework provides the foundation of more reasonable and effective
theoretical analysis ofNCSs. The effectiveness of the proposed approach is illustrated
by a numerical example. Future research will be focused on controller design and
performance analysis within the framework of data packet disorders.
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Chapter 10
Error Bounded Sensing for Packet-Based
Networked Control Systems

Anerror bounded sensing strategy is proposedwithin the packet-based control frame-
work for networked control systems (NCSs). This strategy reduces the data trans-
missions in both the sensor-to-controller and the controller-to-actuator channels by
allowing the transmissions of only the sensing and control data packets that satisfy
some predetermined transmission rules. By fitting it into the packet-based control
framework forNCSs, this strategy can achieve the goal of reducing the use of the com-
munication resources while at the meanwhile maintaining the system performance
at an acceptable level. Stabilized controllers are designed within this framework and
the effects on the system stability brought by this approach are also investigated.
Numerical and experimental examples illustrate the effectiveness of the proposed
approach.

This chapter is organized as follows. In Sect. 10.1, the design details of the EBS
strategy within the packet-based control framework are presented. The correspond-
ing closed-loop system is then modeled and analyzed, and the effects brought by
this approach are also investigated in Sect. 10.2. The effectiveness of the proposed
approach is illustrated by both numerical and experimental examples in Sect. 10.3
and Sect. 10.4 concludes the chapter.

10.1 Error Bounded Sensing for PBNCSs

The block diagram of the networked control system considered in this chapter is
illustrated in Fig. 2.1. Although not explicitly shown in the figure, it is usually the
case that the communication network is shared with other applications but not private
to the considered control system. The applications are also not limited solely to
the control purpose. This system setting justifies the claim made earlier, that is,
the dependence on the data exchanges in Internet-based NCSs ought to be reduced
as much as possible, especially in the presence of heavy communication burdens,
since the consuming of the communication resources can (1) affect the access to the
communication resources of other applications and (2) increase the risk of causing
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congestion in the communication network which can then degrade the overall system
performance.

The EBS strategy proposed in this chapter is exactly intended for the very purpose
of reducing the use of the communication resources. With the help of the packet-
based control approach to NCSs, this strategy can achieve the goal of reducing the
use of the communication resources while maintaining the system performance at
an acceptable level at the same time. In what follows, the EBS strategy is discussed
first, which is then fitted into the packet based control framework to form a complete
solution to NCSs.

Before proceeding with the EBS strategy for PBNCSs, however, it is necessary
to make the following assumption on the characteristics of the communication con-
straints in NCSs, which guarantees that the sensing data at the controller side and
the control signals at the actuator side, are updated within finite time intervals. This
assumption is reasonable in practice as well as important in theory.

Assumption 10.1 The network-induced delay in the sensor-to-controller channel
and the controller-to-actuator channel are upper bounded by τ̄sc and τ̄ca , respectively.

10.1.1 Error Bounded Sensing in the Sensor-to-controller
Channel

As mentioned earlier, the implementation of the EBS strategy is based on the trade-
off between the system performance and the use of the communication resources.
Regardless of the specific implemental procedures, the goal of the strategy is clear,
that is, it is aimed at reducing the sensing data transmissions as much as possible
while at the same time guaranteeing the sensing error at the controller side being
bounded by a predetermined bound, say, δs > 0. Therefore, it is fairly clear that the
key procedure of the EBS strategy is to determine whether the sensing signal at a
specific time is sent to the controller or not. We refer to this key procedure as the
“sensor transmission rule” (STR) which is discussed in detail as follows.

In order to present the STR in a precise manner, first define δk and σ(·) : N →
{0, 1}, as follows,

δk � ||x(k) − x(k − 1)|| (10.1a)

σ(k) �
{
1, if x(k) is sent to the controller;
0, otherwise.

(10.1b)

where x(k) is the system state at time k and || · || indicates the Euclidian norm.
For simplicity the system states are assumed to be fully accessible in this chapter.
However, even this is not the case the systemstates can still be obtained (probablywith
error) by using an appropriate state observer and thus will not affect the discussions
that follow. It is readily seen from the definitions in (10.1) that σ(·), as an indicator
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function, indicates whether a sensing signal at a specific time is sent to the controller
or not. Therefore, the function σ(·) actually defines the STR in a mathematical
manner, whose specific definition will be given as follows.

Suppose for some integers k0 > 1 and 0 ≤ j ≤ Ns , the sensing signal at time
k0 − 1 is sent to the controller while those from time k0 to k0 + j − 1 are not. The
STR can then be defined at time k0 + j , as follows,

σ(k0 + j) =

⎧⎪⎨
⎪⎩
1, if δk0+ j > α j ||x(k0 + j)||

or j = Ns;
0, otherwise.

(10.2a)

where α j � δs
Ns+(Ns− j)δs

. Notice here that Ns , referred to as the “maximum transmis-
sion interval”, is an integer being chosen to guarantee that the sensing signals at the
controller side are updated within a finite time interval. In fact, by the STR defined in
(10.2a), at least one sensing signal will be sent to the controller within Ns time steps
and therefore the sensing data at the controller side will be updated no more than
τ̄ ∗
sc � τ̄sc + Ns time steps. It is also noticed that the definition of the STR in (10.2a)
is complete in the sense that it has been defined for all the time instants k ≥ 1. To
interpret this, for any k ≥ 1, define kσ = max{ j |1 ≤ j ≤ k,σ( j) = 1}, and the STR
in (10.2a) can then be reformed as

σ(k) =

⎧⎪⎨
⎪⎩
1, if δk > αk−kσ

||x(k)||
or k − kσ = Ns;

0, otherwise.

(10.2b)

which clearly is a complete definition for all k ≥ 1.
The rationality of the STR defined in (10.2a) may not seem straightforward at the

first sight, for one can readily propose a much simpler transmission rule by simply
letting the sensing signal being sent at time k if δk is larger than a predetermined
constant threshold.However, the transmission rule defined in (10.2a) is different from
this simple rule in two aspects, the presence of the maximum transmission interval,
Ns , and the use of variable thresholds, α j , for good reasons. Firstly, as mentioned
above, with the definition of Ns it is guaranteed that the sensing data at the controller
side is updated no more than τ̄ ∗

sc time steps while without it, a particular case could
occur in principle where for a sufficient long time no sensing data is updated at the
controller side which can destabilize the system readily. Secondly, with the carefully
chosen variable thresholds,α j , it is shown later that the sensing error at the controller
side is always upper bounded by δs , which is essential for the sake of maintaining
the system performance.
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10.1.2 Packet-Based Control in the Controller-to-actuator
Channel

With the use of the EBS strategy and the packet-based control approach, the FCS at
time k can be constructed as follows,

Û (k) � [û(k) . . . û(k + N − 1)] (10.3)

where û(k+i), i = 1, 2, . . . , τ̄ca are the forward control signals based on the sensing
data x̂(k) at time k, and N is the number of the control signals that one data packet
can contain. Note here that the symbol ˆ is used to indicate the fact that the control
signals are calculated based on the sensing data with error, x̂(k), due to the use of
the EBS strategy.

In conventional packet-based control approach to NCSs, the FCSs are sent to
the actuator at every step. However, in view of the fact that the sensing data at the
controller side is not updated at every step, it is therefore not necessary to send
the FCS in the case of no sensing data being updated. This strategy, referred to as
the “controller transmission rule” (CTR) , analogously to the STR discussed in the
previous subsection, can considerably reduce the data transmissions in the controller-
to-actuator channel. In fact, the total number of the FCS that is actually sent would
be the same as that of the sensing data packets received by the controller. Therefore,
analogously the upper bound of the delay in the controller-to-actuator channel after
applying the CTR can be obtained as τ̄ ∗

ca = τ̄ca + Ns .

10.1.3 The EBS Strategy for PBNCSs

Notice that with the EBS strategy, the sensing data at the controller side, x̂(k) at time
k, is actually the real sensing signal at a previous time, k − τ ∗

sc,k , that is,

x̂(k) = x(k − τ ∗
sc,k) (10.4)

where τ ∗
sc,k ≤ τ̄ ∗

sc and k − τ ∗
sc,k indicates the time when the sensing signal x̂(k)

was sampled at the sensor side. This facts enables us to modify the conventional
packet-based control for NCSs by reconstructing the FCS defined in (10.3),

U (k|k − τ ∗
sc,k) = [u(k|k − τ ∗

sc,k) . . . u(k + N − 1|k − τ ∗
sc,k)] (10.5)

where the sampling time of the sensing data based on which the FCS is calculated,
is explicitly indicated. Note here that both the FCS and the forward control signals
in (10.5) use a dual time indicator (k1|k2) in which k1 stands for the time instant of
the control action while k2 for the time instant of the sensing data that is used to
produce the control signal. In light of (10.4) this FCS can be equivalent to the one in

ybzhao@zjut.edu.cn



10.1 Error Bounded Sensing for PBNCSs 131

(10.3) provided the same controller design methods are used. Their difference only
relies on the different perspectives from which we look at the EBS strategy. That
is, the effects brought by the EBS for PBNCSs can be interpreted by two different
but equivalent ways, either sensing error without delay in the sensor-to-controller
channel (10.3), or pure extra delay without sensing error (10.5).

Based on (10.5), the control signal that is actually applied to the plant at time
k at the actuator side can be determined as follows. Denote the delay of the FCS
from which the control signal is selected at time k by τ ∗

ca,k . This FCS was thus

calculated based on the sensing data at time τ ∗
k � τ ∗

sc,k + τ ∗
ca,k and therefore it should

be U (k − τ ∗
ca,k |k − τ ∗

k ) based on the time at the actuator side. The control signal
actually applied to the plant at time k can then be chosen as

u(k) = u(k|k − τ ∗
k ) (10.6a)

which can compensate for the current network-induced delay in a precise way. Let
τ̄ ∗ � τ̄ ∗

sc + τ̄ ∗
ca be the modified upper bound of the delay in the round trip after

the application of the EBS strategy and define Ω∗ = {2, 3, . . . , τ̄ ∗} as the set of all
possible round trip delays, it is held that

τ ∗
k ∈ Ω∗,∀k (10.6b)

which with (10.6a) defines the complete control law for the proposed approach in
this chapter.

The algorithm of the EBS strategy for PBNCSs can now be organized as follows,
the block diagram of which is illustrated in Fig. 10.1.

Remark 10.1 One may wonder why we do not construct a model of the plant at the
controller side and update the system states using this model if the real sensing data is
unavailable, as done in [53, 149], in which way the developed model seemingly can
be used to reduced the sensing error. The reasons of not doing so are twofold. Firstly,
the data transmission in both the sensor-to-controller and the controller-to-actuator
channels can be effectively reduced using the EBS strategy within the packet-based

Fig. 10.1 Error bounded sensing for packet-based networked control systems
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Algorithm 10.1 The EBS strategy for PBNCSs
S1. Initialization. Set k = 1, kσ = 1. Sample the system state x(1) and send it to the controller.
S2. Let k = k + 1. If δk > αk−kσ ||x(k)|| or k − kσ = Ns , sample the system state x(k), send it
to the controller and let kσ = k.
S3. Check if the system state is updated at the controller side. If so then calculate the FCS by
(10.5) and send it to the actuator.
S4. The control signal in (10.6) is applied to the plant. Return to S2.

control framework, which has not been considered in this model-based approach.
Secondly, with the use of the packet-based control approach which is capable of
producing forward control signals based on delayed sensing data, the reconstruction
of the system states is thus not necessary which is however the main concern of using
the model-based approach.

10.2 Stabilization and Further Discussion

In this section, the stability and stabilization issues of the proposed approach are
consideredfirst, and the effects on the system stability brought by theEBS strategy are
then investigated by comparing it with conventional packet-based control approach.
This analysis is based on two different models for the proposed approach, that is, in
the former analysis the delay effect brought by the approach is explicitly formulated
with the FCS in (10.3) while for the latter the focus is mainly on the sensing error
introduced by the approach with the FCS in (10.5).

For simplicity the following linear plant in discrete time is considered in Fig. 2.1,
however it is worth pointing out that the proposed approach is applicable to any
systems but not limited to this particular type,

x(k + 1) = Ax(k) + Bu(k) (10.7)

where x ∈ R
n , u ∈ R

m , A ∈ R
n×n , B ∈ R

n×m . The controller is assumed to be of the
form of state feedback. In light of (10.6) the controller can be obtained as follows,

u(k) = u(k|k − τ ∗
k ) = Kτ ∗

k
x(k − τ ∗

k ) (10.8a)

Note here that the controller gains Kτ ∗
k
are delay dependent, which is one of the

most important characteristics of the packet-based control approach. This charac-
teristic distinguishes this approach from conventional control approaches to NCSs,
where normally a constant controller gain is used for all network conditions [36, 37].

It is noticed that by (10.4) the control law in (10.8a) can also be written in the
following way

u(k) = u(k|k − τ ∗
k ) = Kτ ∗

ca,k
x̂(k − τ ∗

ca,k) (10.8b)
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Notice that the controller in (10.8b) is now based on sensing data τ ∗
ca,k instead

of τ ∗
k as in (10.8a), meaning that the delay in the sensor-to-controller channel is

eliminated in this model. However this is obtained at the cost of introducing sensing
error to the system, which is defined as

es(k) � ||x(k) − x̂(k)||, k ≥ 1 (10.9)

Although it is possible to define the same control gains in both (10.8a) and (10.8b),
it is preferred, however, to define the controller gains based on the current delays, as
done above. It is thus clear that the two controllers are not exactly equivalent, as will
be illustrated later in Fig. 10.3 in Example 10.1.

10.2.1 Stabilization

It is noticed that the closed-loop system in (10.7) and (10.8a) is in its standard
form within the packet-based control framework. As far as the model is concerned,
the EBS strategy only increases the upper bound of the delay but does not affect the
formulation of the system,meaning that the standard analysis techniques for PBNCSs
can still be applied here. Therefore, for completeness the stability and stabilization
results for the closed-loop system in (10.7) with the control law defined in (10.8a)
are presented as follows without proving, since the proofs can be obtained following
similar procedures as done in [109].

Theorem 10.1 (Stability) Given λ ≥ 1 and the feedback gains Ki , i ∈ Ω∗. The
system in (10.7) with the control law in (10.8a) is stable if there exist Pi = PT

i > 0,

Qi = QT
i > 0, Ri = RT

i > 0, Si =
(

S11i S12i
(S12i )T S22i

)
≥ 0, T 1

i , T
2
i with appropriate

dimensions such that

1. ∀i ∈ Ω∗,

�i =
⎛
⎝�11

i �12
i (A − I )T Hi

∗ �22
i (BKi )

T Hi

∗ ∗ −Hi

⎞
⎠ < 0

Ψi =
⎛
⎝λS11i λS12i λT 1

i∗ λS22i λT 2
i∗ ∗ Ri

⎞
⎠ ≥ 0

2. ∀i, j ∈ Ω∗

Pi ≤ λPj , Qi ≤ λQ j , Ri ≤ λR j
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where

�11
i =(λ − 1)Pi + Qi + 2λPi (A − I )

+ T 1
i + (T 1

i )T + i S11i ,

�12
i = λPi BKi − T 1

i + (T 2
i )T + i S12i ,

�22
i = −T 2

i − (T 2
i )T + i S22i ,

Hi = λPi + τ̄ ∗Ri .

Based on Theorem 10.1, the following stabilization result can then be obtained,
which is computationally feasible due to the cone complementarity linearization
technique [135].

Theorem 10.2 (Stabilization) Given λ ≥ 1. Define the following nonlinear mini-
mization problem Pi involving LMI conditions for i, j ∈ Ω∗,

Pi :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize Tr(Zi Ri + Li Pi + Mi Qi )

Subject to:
Li = LT

i > 0,Wi = WT
i > 0, Mi = MT

i > 0,
Li ≤ λL j , Mi ≤ λMj ,Wi ≤ λWj ,

Xi =
(

X11
i X12

i
(X12

i )T X22
i

)
≥ 0,

�′
i < 0, Ψ

′
i ≥ 0,�1

i ≥ 0,�2
i ≥ 0,�3

i ≥ 0,�4
i ≥ 0.

(10.10)

where

�′
i =

⎛
⎜⎜⎝

�11′
i �12′

i λL(A − I )T τ̄ L(A − I )T

∗ �22′
i λ(BVi )

T τ̄ (BVi )
T

∗ ∗ −λLi 0
∗ ∗ ∗ −τ̄Mi

⎞
⎟⎟⎠ ,

Ψ
′
i =

⎛
⎝λX11

i λX12
i λY 1

i∗ λX22
i λY 2

i∗ ∗ Zi

⎞
⎠ ,

�1
i =

(
Ri Pi
∗ Qi

)
,�2

i =
(
Zi I
∗ Ri

)
,
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�3
i =

(
Li I
∗ Pi

)
,�4

i =
(
Mi I
∗ Qi

)
.

If the solution of Pi = 3n,∀i ∈ Ω , the system in (10.7) is then stabilizable with
the control gains in (10.8a) being Ki = Vi L

−1
i .

Remark 10.2 The aboveLMI-based stabilization approach is only oneof the possible
ways to design the controller within the proposed framework. Indeed, the designed
EBS strategy for PBNCSs is intended to reduce the data transmissions and it does not
affect directly the design of the controllers. This means all the previously designed
controllers within the packet-based control framework can still be used for this mod-
ified framework. However, further improvement is still necessary, as it is straightfor-
ward that a design approach with the EBS strategy taking into consideration, rather
than one without it, can potentially improve the system performance further.

10.2.2 The Effects of the EBS Strategy

In order to investigate the effects of the EBS strategy for PBNCSs, the upper bound
of the sensing error defined in (10.9) is first discussed in the following proposition.

Proposition 10.1 The sensing error es(k) brought by the EBS strategy is upper
bounded by δs , ∀k. That is,

es(k) ≤ δs ||x(k)||,∀k (10.11)

Proof For simplicity of notation let j � τ ∗
sc,k in (10.4). Noticing that σ(k − i) = 0

for 0 ≤ i ≤ j − 1 < Ns , the following inequality for 0 ≤ i ≤ j − 1 is thus held in
light of (10.2),

||x(k − i) − x(k − i − 1)|| ≤ α j−i ||x(k − i)||

From above it is concluded that for 1 ≤ i ≤ j

||x(k − i)|| ≤ (1 + α j−i+1)||x(k − i + 1)||

Repeatedly using above yields

α j−i ||x(k − i)|| ≤ α j−i

i−1∏
l=0

(1 + α j−i+1+l)||x(k)||

Notice that by the definition of αi we have αi (1 + αi+1) = αi+1, 0 ≤ i ≤ Ns − 1.
Therefore
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α j−i

i−1∏
l=0

(1 + α j−i+1+l)

≤ α j−i

i−1+Ns− j∏
l=0

(1 + α j−i+1+l) = αNs

Thus,

es(k) ≤
j−1∑
i=0

||x(k − i) − x(k − i − 1)||

≤
j−1∑
i=0

α j−i ||x(k − i)||

≤ jαNs ||x(k)||
≤ NsαNs ||x(k)||
= δs ||x(k)||

which completes the proof.

With (10.11), the control law in (10.8b) can then be reformed as

u(k) = Kτ ∗
ca,k

(I + �k)x(k − τ ∗
ca,k)

with

(I + �k)x(k − τ ∗
ca,k) � x̂(k − τ ∗

ca,k)

where by (10.11) we have

||�k || ≤ δs,∀k

The closed-loop system can then be obtained as

x(k + 1) = Ax(k) + BKτ ∗
ca,k

(I + �k)x(k − τ ∗
ca,k) (10.12)

Correspondingly, without the EBS strategy the closed-loop system should be of the
following form

x(k + 1) = Ax(k) + BKτk x(k − τk), τk ∈ Ω (10.13)

where Ω = {2, 3, . . . , τ̄ }.
Remark 10.3 From (10.12) and (10.13), it is seen that the EBS strategy modifies the
system in twoways, the introduction of the bounded sensing error (represented by�k )
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and the modification of the delay to the system. The former invariably introduces
negative effects to the system which is the cost that we have to pay in order to reduce
the use of the communication resources. However, noticing that τ̄ ∗

ca = τ̄ca + Ns and
τ̄ = τ̄sc+ τ̄ca , the latter can, at least in principle, reduce the delay bound to the system
(when Ns < τ̄sc) which can potentially be beneficial to the system performance.

To quantitatively interpret these effects, a special case of the closed-loop system
in (10.12) is considered by letting Ns = τ̄sc, thus making τ ∗

ca,k = τk and (10.12)
being reformed to

x(k + 1) = Ax(k) + BKτk (I + �k)x(k − τk) (10.14)

where τk ∈ Ω .
For the closed-loop systems in (10.13) and (10.14), their stability conditions are

compared in the following theorem. It is seen that the stability conditions for both
systems are closely related and the system in (10.14) requires relatively stronger
conditions for stability due to the sensing error introduced, which makes sense in
practice.

Theorem 10.3 Given λ ≥ 1 and the feedback gains Ki , i ∈ Ω . The closed-loop
system in (10.13) is stable if there exist Pi = PT

i > 0, Qi = QT
i > 0, Ri = RT

i > 0,

Si =
(

S11i S12i
(S12i )T S22i

)
≥ 0, T 1

i , T
2
i with appropriate dimensions and a scalar γ > 0

such that

1. ∀i ∈ Ω ,

�
′′
i < 0 (10.15)

Ψ
′′
i ≥ 0 (10.16)

2. ∀i, j ∈ Ω ,

Pi ≤ λPj , Qi ≤ λQ j , Ri ≤ λR j (10.17)

where �
′′
i and Ψ

′′
i are similarly defined as in Theorem 10.1 by replacing Ω∗ by Ω .

Furthermore, The closed-loop system in (10.14) is stable if (10.16) and (10.17) are
held and (10.15) is replaced by

(
�

′′
i ϒT

i∗ −γ I

)
< 0 (10.18)

where ϒi = [λδPi B 0 δHi B], δ = δs K̄ and K̄ = max{||Ki |||i ∈ Ω}.
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Proof The stability conditions for the system in (10.13) can be obtained directly
from Theorem 10.1. From the definition of δ it is noticed that

BKτk (I + �k) = BKτk + δB × Kτk�k/δ

with ||Kτk�k/δ|| ≤ 1. The closed-loop system in (10.14) can then be well treated
as a time delay system with time-varying uncertainty and (10.18) can be obtained
by replacing BKτk in (10.15) by BKτk + δB × Kτk�k/δ and then follow a standard
robust stability analysis, as done in [150]. The technical details are therefore omitted
in this chapter.

10.3 Numerical and Experimental Examples

In this section, both numerical and experimental examples are considered to illustrate
the effectiveness of the EBS strategy for PBNCSs.

Example 10.1 In this example, the system in (10.7) is considered with the following
system matrices the same as in Example 2.1,

A =
(
0.98 0.1
0 1

)
, B =

(
0.04
0.1

)
.

This system is readily seen to be open-loop unstable. In the simulation, the initial
state for the above system is set as x0 = [−1 1]T , the upper bound of the delay
in both channels are τ̄sc = τ̄ca = 3 respectively, Ns = 2 and δs = 0.35. Other
parameters can then be obtained as follows: τ̄ = τ̄sc + τ̄ca = 6, τ̄ ∗

sc = τ̄sc + Ns = 5,
τ̄ ∗
ca = τ̄sc + Ns = 5, τ̄ ∗ = τ̄ ∗

sc + τ̄ ∗
ca = 10 and α j , 0 ≤ j ≤ Ns can also be obtained

accordingly which are not listed here for simplicity of notations.
The main purpose of this example is to illustrate the effectiveness of the proposed

EBS strategy within the packet-based control framework, by comparing it with con-
ventional packet-based control approach. In order to eliminate possible effects on
the system performance brought by different controller design methods, the con-
trollers for both approaches are therefore designed using the same receding horizon
approach, which yields the following feedback gain K for the packet-based control
approach with τ̄ = 6,

K =

⎛
⎜⎜⎜⎜⎝

K2

K3

K4

K5

K6

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

−0.4280 −0.9753
−0.3412 −0.8704
−0.2660 −0.7739
−0.2012 −0.6853
−0.1458 −0.6040

⎞
⎟⎟⎟⎟⎠ ,

and the following feedback gain K ∗ for the EBS strategy for PBNCSs with τ̄ ∗ = 10,
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K ∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K ∗
2

K ∗
3

K ∗
4

K ∗
5

K ∗
6

K ∗
7

K ∗
8

K ∗
9

K ∗
10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.4280 −0.9753
−0.3412 −0.8704
−0.2660 −0.7739
−0.2012 −0.6853
−0.1458 −0.6040
−0.0990 −0.5296
−0.0600 −0.4616
−0.0280 −0.3996
−0.0023 −0.3432

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Four different cases are considered in the simulation: (1) conventional packet-
based control approach with all the sensing and control data packets being sent;
(2) the EBS strategy for PBNCSs with the control law in (10.8a) where the delay
effect is explicitly considered; (3) the EBS strategy for PBNCSs with the control
law in (10.8b) where the extra delay is explicitly considered and (4) conventional
packet-based control approach with only partial sensing and control data packets
being sent (with the same transmission ratio as using the EBS strategy). The last
case is considered mainly to illustrate the effectiveness of the proposed EBS strategy
by comparison in the presence of poor communication conditions and is simulated
by applying zero control when no sensing data is available.

The state responses for the above four cases are illustrated in Fig. 10.2. It is seen
that the system performance of case 1) is the EBSt which is reasonable since this
case has used the most communication resources. Though slightly worse than case
1), the system performances with the EBS strategy (the solid line for case 2) and the
dashed line for case 3)) are still maintained at a satisfactory level, which illustrates
the effectiveness of the proposed approach. This result can be verified by looking
into the comparison of the control inputs for these three cases shown in Fig. 10.3.
All these control inputs are seen to be very close. It is worth mentioning that the
acceptable system performances using the EBS strategy are achieved with a 65%
reduction of the communication resources, meaning that only around 35% of the
sensing data packets and the FCSs are actually sent.

The effectiveness of the EBS strategy can further be proven by comparing with
case 4) (the dotted line in Fig. 10.2) where the same amount of the sensing data
packets and FCSs are sent but conventional packet-based control approach gives rise
to much worse system performance. This also proves the effectiveness of the EBS
strategy in the presence of poor communication conditions.

As for the two control laws, (10.8a) and (10.8b), for the EBS strategy for PBNCSs,
it is noticed that the control law in (10.8a) results in a little better system performance
than that in (10.8b). This makes sense in this particular example, since the used
controller design method in this example only takes delay effect into account but not
the sensing error.

Example 10.2 In order to verify the effectiveness of the proposed approach in prac-
tice, the Internet-based test rig for NCSs introduced in Chap.2 is considered.
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In the experiment we set Ns = 4, δs = 0.4, and thus τ̄ ∗
sc = τ̄ ∗

ca = 8 sampling peri-
ods and τ̄ ∗ = 16 sampling periods. The controller is designed using Theorem 10.2,
as follows,

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K2

K3

K4

K5

K6

K7

K8

K9

K10

K11

K12

K13

K14

K15

K16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.0735 0.0065 0.0294
−0.0671 0.0057 0.0260
−0.0626 0.0051 0.0236
−0.0601 0.0052 0.0225
−0.0579 0.0051 0.0215
−0.0564 0.0048 0.0209
−0.0536 0.0045 0.0198
−0.0530 0.0045 0.0194
−0.0524 0.0044 0.0191
−0.0517 0.0043 0.0188
−0.0506 0.0042 0.0181
−0.0496 0.0041 0.0177
−0.0491 0.0039 0.0175
−0.0483 0.0040 0.0170
−0.0481 0.0041 0.0169

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The system response is illustrated in Fig. 10.4, where it is seen that the system
performance is fairly satisfactory. At the meanwhile, it is noticed that with the EBS
strategy and the above parameters, in both channels only around26%of the data pack-
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Fig. 10.4 Experimental response using the error bounded sensing strategy for packet-based net-
worked control systems
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ets are actually sent, meaning that the system performance in Fig. 10.4 is achieved
with a reduction of 74% of the use of the communication resources in both chan-
nels. This reduction is beneficial for other applications that share the Internet and
also beneficial for the considered system in the sense that it can still perform well
in the case of poor communication conditions with the use of the EBS strategy for
PBNCSs. This thus proves the effectiveness of both the EBS strategy as well as the
stabilization controller designed in this chapter.

10.4 Summary

Reducing the use of the communication resources is one of the important design
principles in NCSs, which is beneficial for other applications that share the same
communication network and also of potential significant importance to the system
itself in the presence of poor communication conditions. An error bounded sensing
strategy is thus proposed in this chapter within the packet-based control framework
for NCSs in order to do this reduction, by sending only the sensing and control
data packets that are absolutely necessary for the purpose of maintaining the system
performance. It is noticed that the efficient reduction of the use of the communi-
cation resources by the proposed approach is obtained at the cost of introducing
bounded sensing error, or equivalently, extra delay, to the system. Theoretical analy-
sis reveals that these negative effects can be well treated within the packet-based
control framework and do not affect the system performance severely. Numerical
and experimental examples verify the theoretical results and also illustrate its effec-
tiveness in the presence of poor communication conditions. Therefore, in some sense
this strategy completes the packet-based control approach and enables the latter to
be an efficient and complete solution to NCSs.
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Chapter 11
Packet-Based Deadband Control
for Networked Control Systems

This chapter proposes a deadband control approach to packet-based networked con-
trol systems. Comparedwith standard PBNCSs, the deadband control approach takes
full advantage of the packet-based data transmission in NCSs, and thus considerably
reduces the use of the communication resources in NCSs whilst maintaining the
system performance at a satisfactory level. A stabilized controller design method is
obtained using time delay switched system theory, which has not been achieved in
previously reported packet-based control approaches. The proposed deadband con-
trol strategy and the stabilized controller design method are verified using a numeri-
cal example as well as practical experiments based on the Internet-based test rig for
NCSs.

This chapter is organized as follows. Within the packet-based control framework,
Sect. 11.1 presents the packet-based deadband control approach to NCSs. The corre-
sponding closed-loop system is then obtained, with stability analysis and a stabilized
controller design method obtained based on LMIs in Sect. 11.2. In Sect. 11.3 both
numerical and experimental examples are considered to illustrate the effectiveness
of the theoretical results and Sect. 11.4 concludes the chapter.

11.1 Packet-Based Deadband Control for NCSs

The following linear plant in discrete time is considered in this chapter, which is
controlled over the network by a remote controller, as shown in Fig. 2.1,

x(k + 1) = Ax(k) + Bu(k) (11.1)

where x ∈ R
n , u ∈ R

m , A ∈ R
n×n , B ∈ R

n×m .
For the implementation of the packet-based deadband control approach to NCSs,

we assume that the dynamics of the control system and the characteristics of the
communication network in Fig. 2.1 satisfy the following assumptions as discussed
in Chap.2.
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Assumption 11.1 (Delay bound) The sum of the network-induced delay and con-
secutive data packet dropout in both the sensor-to-controller and the controller-to-
actuator channels (denoted by τ̄sc and τ̄ca respectively) are upper bounded, i.e.,

τ̄sc � max
k≥1

{τsc,k + χ̄sc} < ∞ (11.2a)

τ̄ca � max
k≥1

{τca,k + χ̄ca} < ∞ (11.2b)

where τsc,k , χ̄sc and τca,k , χ̄ca represent the network-induced delay and the upper
bound of consecutive data packet dropout in the sensor-to-controller and the
controller-to-actuator channels respectively.

As discussed in Chap. 2, using the packet-based control approach, the following
FCS is calculated and sent in one data packet to the actuator,

U p(k|k − τsc,k) = [u(k|k − τsc,k) . . . u(k + τ̄ca|k − τsc,k)] (11.3)

Denote the effective load of the data packet being used in the NCS by Bp and the
data size required for encoding a single step of the control signal by Bc. The number
of control signals that one data packet can contain can then be obtained as

N = � Bp

Bc
� (11.4)

where � Bp

Bc
� = max{ς|ς ∈ N, ς ≤ Bp

Bc
}.

It is noticed that N is usuallymuch larger than \bar{\tau}_{ca}. This observa-
tion thus motivates us to design the following modified FCS where the length of FCS
is extended to the maximum of what a data packet can contain but not determined
by the upper bound of the communication constrain in the controller-to-actuator
channel,

U (k|k − τsc,k) = [u(k|k − τsc,k) . . . u(k + N − 1|k − τsc,k)] (11.5)

The motivation of proposing the deadband control strategy is due to the fact that
the communication constraints play a dominant role in the system performance of
NCSs and for a better system performance, we have to decrease possible congestion
in the network by reducing the use of the communication resources. On the other
hand, much more redundant forward control signals are packed into one data packet
using FCS in (11.5). This enables us to set a deadband for FCSs and send only those
that have a sufficiently large change compared with the last sent FCS. In this way,
the use of the communication resources can be significantly reduced and the system
performance can still be maintained at a satisfactory level if the deadband is carefully
chosen.
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Fig. 11.1 The block diagram of packet-based deadband control for networked control systems
where CAS represents the control action selector

The block diagram of the packet-based deadband control approach to NCSs is
illustrated in Fig. 11.1, where it is seen that this structure is different from conven-
tional control approaches mainly in two aspects: the packet-based deadband con-
troller and the so-called Control Action Selector (CAS) at the actuator side. The
latter consists of a register to store only the latest data packet and a logic comparator
to determine which data packet contains the latest information and thus can be used
to deal with data packet disorder and to actively compensate for network-induced
delay, as discussed in Chap. 2.

The packet-based deadband controller is used to produce FCS in (11.5) and,
different from standard packet-based control approach, also to determine whether a
newly produced FCS should be sent or not. For this purpose, a register is present at the
controller side to store the last sent FCSwhich is denoted byU (k−�k |k−�k−τsc,k−�k )

at time k at the controller side, where k − �k is the time when the last FCS was sent.
The newly produced FCS U (k|k − τsc,k) at time k will be sent to the actuator if it
has changed dramatically compared with the one last sent, i.e.,

δk � max
0≤i≤N−�k−1

||�uki ||
||u(k + i |k − τsc,k)|| > δ (11.6)

where δ is the deadband set for FCSs, || · || denotes the Euclidean norm and �uki =
u(k + i |k − τsc,k) − u(k + i |k − �k − τsc,k−�k ). On the other hand, in order that there
is always a control signal available at the actuator side, FCS has to be sent at least
once within N − τ̄ca time steps, which also implies that �k ≤ N − τ̄ca − 1,∀k.

The algorithm of packet-based deadband control for NCSs can be organized as
follows.

It is readily seen that this packet-based deadband control approach is different
from standard packet-based control approach since not all the FCSs are sent to the
actuator, but only those that have changed dramatically compared with the one last
sent. This strategy reduces the demand on the communication resource in NCSs
and, furthermore, can improve the system performance in the presence of heavy
transmission load on the network being used in NCSs, as illustrated in Sect. 11.3.
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Algorithm 11.1 Packet-based deadband control
Initiation. Set k = 0, �k = 0.
if At time k at the controller side, either 1) (11.6) is satisfied; or 2) �k = N− τ̄ca −1, the controller
then
sends the current FCS to the actuator
updates the register of the controller to be this FCS
lets �k+1 = 1, k = k + 1

else
Let �k+1 = �k + 1, k = k + 1 and wait for the next time instant.

end if
if A new FCS is received then
CAS compares its time stamp with the one already in its register and only the latest is stored.

end if
The appropriate control signal is selected from FCS by (11.7b) and applied to the plant.

11.2 Stability and Stabilization of Packet-Based Deadband
Control

In this section, the control law using the packet-based deadband control approach
is explicitly presented, with a comparative analysis with the previous packet-based
control approach. The stability of the derived closed-loop systems is then investigated
from a time delay switched system theory perspective [117, 146, 151], with also a
comparison of the stability conditions for both approaches. Finally, an LMI-based
stabilization result is obtained, which can be solved using the well-known cone
complementarity technique [135].

11.2.1 The Control Laws

It is noticed that one major difference between the previous packet-based control
approach and the packet-based deadband control approach in this chapter lies in the
use of different FCSs, as presented in (11.3) and (11.5), respectively. Using FCS in
(11.3), that is, with the use of the packet-based control approach, the control action
taken at time k at the actuator side is determined by

u p(k) = u(k|k − τ
∗p
k ), τ

∗p
k ∈ Ω p (11.7a)

where τ
∗p
k denotes the round trip delay of the FCS being used at time k, τ̄ p = τ̄sc+τ̄ca

is the upper bound of the delay and consecutive data packet dropout for the round
trip and Ω p = {2, 3, . . . , τ̄ p}. It is worth mentioning that τ ∗p

k ≥ 2 is due to the fact
that the data packets in both the sensor-to-controller and the controller-to-actuator
channels experience at least one step delay respectively in practice.

ybzhao@zjut.edu.cn



11.2 Stability and Stabilization of Packet-Based Deadband Control 147

With the use of FCS in (11.5) and the corresponding deadband control strategy
in (11.6), the control signal used may be based on older sampled data information
with the control action taken at time k being

u(k) = u(k|k − τ ∗
k ), τ ∗

k ∈ Ω (11.7b)

where τ ∗
k denotes the round trip delay of the FCS being used in the packet-based

deadband control case, τ̄ = τ̄sc + N − 1, Ω = {2, 3, . . . , τ̄ } and it is seen that
τ ∗
k ≥ τ

∗p
k ,∀k.

Though the control signal in (11.7b) may be based on older sampled data infor-
mation, with the deadband control strategy in (11.6), the difference between u(k) and
u p(k) is however restrained within a small range, which helps to maintain the sys-
tem performance using the packet-based deadband control approach at a satisfactory
level,

||u(k) − u p(k)|| ≤ δ||u p(k)||,∀k (11.8)

For simplicity, in this chapter state feedback is used and thus the control law in
(11.7a) and (11.7b) can be explicitly represented by

u p(k) = K p
τ

∗p
k
x(k − τ

∗p
k ), τ

∗p
k ∈ Ω p (11.9a)

and

u(k) = Kτ ∗
k
x(k − τ ∗

k ), τ ∗
k ∈ Ω (11.9b)

respectively, where the feedback gains K p
τ

∗p
k
, Kτ ∗

k
with respect to the corresponding

round trip delays τ
∗p
k and τ ∗

k , are to be designed.
With the control laws defined in (11.9a) and (11.9b), the closed-loop systemmodel

with the packet-based control approach can be obtained as

x(k + 1) = Ax(k) + BK p
τ

∗p
k
x(k − τ

∗p
k ), τ

∗p
k ∈ Ω p (11.10a)

and for the packet-based deadband control approach, it is obtained as

x(k + 1) = Ax(k) + BKτ ∗
k
x(k − τ ∗

k ), τ ∗
k ∈ Ω (11.10b)

In light of the relationship between both control laws in (11.8), the closed-loop
system model for the packet-based deadband control approach in (11.10b) can also
be represented by the following system model with time-varying uncertainty,

x(k + 1) = Ax(k) + (B + �Bk)K
p
τ

∗p
k
x(k − τ

∗p
k ), τ

∗p
k ∈ Ω p (11.10c)
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where �Bk satisfies

(B + �Bk)K
p
τ

∗p
k
x(k − τ

∗p
k ) = BKτ ∗

k
x(k − τ ∗

k )

and ||�Bk || ≤ δB � δ||B|| in light of (11.8).

11.2.2 Stability and Stabilization

In this subsection, we first investigate the stability of the closed-loop system in
(11.10b) for the packet-based deadband control approach to NCSs, and then compare
the stability conditions for both approaches, with and without the deadband control
strategy.

Theorem 11.1 Given λ ≥ 1 and the feedback gains in (11.10b) for the packet-based
deadband control approach Ki , i ∈ Ω . The closed-loop system in (11.10b) is stable

if there exist Pi = PT
i > 0, Qi = QT

i > 0, Ri = RT
i > 0, Si =

(
S11i S12i

(S12i )T S22i

)
≥ 0,

T 1
i , T

2
i with appropriate dimensions such that

1. ∀i ∈ Ω ,

�i =
⎛
⎝�11

i �12
i (A − I )T Hi

∗ �22
i (BKi )

T Hi

∗ ∗ −Hi

⎞
⎠ < 0 (11.11)

�i =
⎛
⎝λS11i λS12i λT 1

i∗ λS22i λT 2
i∗ ∗ Ri

⎞
⎠ ≥ 0 (11.12)

2. ∀i, j ∈ Ω

Pi ≤ λPj , Qi ≤ λQ j , Ri ≤ λR j (11.13)

where

�11
i = (λ − 1)Pi + Qi + 2λPi (A − I )

+T 1
i + (T 1

i )T + i S11i ,

�12
i = λPi BKi − T 1

i + (T 2
i )T + i S12i ,

�22
i = −T 2

i − (T 2
i )T + i S22i ,

Hi = λPi + τ̄ Ri .
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Proof Suppose at time k, τ ∗
k = i ∈ Ω . Let

z(l) = x(l + 1) − x(l)

We then obtain

x(k) − x(k − τ ∗
k ) −

k−1∑
l=k−τ ∗

k

z(l) = 0

Define the following Lyaponuv functional and notice that the choices of the matri-
ces Pτ ∗

k
, Qτ ∗

k
, Rτ ∗

k
at time k are dependent on the corresponding round trip delay

τ ∗
k ∈ Ω ,

Vi (k) = V 1
i (k) + V 2

i (k) + V 3
i (k)

with

V 1
i (k) = xT (k)Pi x(k)

V 2
i (k) =

0∑
m=−τ̄+1

k−1∑
l=k+m−1

zT (l)Rτ ∗
l
z(l)

V 3
i (k) =

k−1∑
l=k−τ ∗

k

xT (l)Qτ ∗
l
x(l)

Define �Vi (k) = Vτ ∗
k+1

(k + 1) − Vi (k). Then along the trajectory of the system
in (11.10b), we have

�V 1
i (k) = xT (k + 1)Pτ ∗

k+1
x(k + 1) − xT (k)Pi x(k)

≤ λxT (k + 1)Pi x(k + 1) − xT (k)Pi x(k)

= (λ − 1)xT (k)Pi x(k) + 2λxT (k)Pi z(k)

+ λzT (k)Pi z(k)

�V 2
i (k) =

0∑
m=−τ̄+1

(

k∑
l=k+m

−
k−1∑

l=k+m−1

)zT (l)Rτ ∗
l
z(l)

= τ̄ zT (k)Ri z(k) −
k−1∑

l=k−τ̄

zT (l)Rτ ∗
l
z(l)

≤ τ̄ zT (k)Ri z(k) −
k−1∑

l=k−τ ∗
k

zT (l)Rτ ∗
l
z(l)
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�V 3
i (k) = (

k∑
l=k−τ ∗

k+1+1

−
k−1∑

l=k−τ ∗
k

)xT (l)Qτ ∗
l
x(l)

= (

k−1∑
l=k−τ ∗

k+1+1

−
k−1∑

l=k−τ ∗
k

)xT (l)Qτ ∗
l
x(l)

+ xT (k)Qi x(k)

In light of the fact that using the packet-based deadband control approach, data
packet disorder has been effectively eliminated by CAS, that is, the actuator will
never use an older control signal as long as the latest is available. Therefore we have
the following relationship

k + 1 − τ ∗
k+1 ≥ k − τ ∗

k ,∀k ≥ 1

and thus

�V 3
i (k) ≤ xT (k)Qi x(k)

Notice that

z(k) = (A − I )x(k) + BKi x(k − τ ∗
k )

and

Ri ≥ 1

λ
R j , Qi ≥ 1

λ
Q j ,∀i, j

We then obtain

�Vi (k) ≤xT (k)((λ − 1)Pi + Qi + 2λPi (A − I )+
(A − I )T Hi (A − I ))x(k)

+ 2xT (k)(λPi BKi + (A − I )T Hi BKi )

x(k − τ ∗
k )

+ xT (k − τ ∗
k )(BKi )

T Hi BKi x(k − τ ∗
k )

− 1

λ

k−1∑
l=k−τ ∗

k

zT (l)Ri z(l) (11.14)

where Hi = λPi + τ̄ Ri .
In addition, we have for any T 1

i , T
2
i with appropriate dimensions,
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2[xT (k)T 1
i + xT (k − τ ∗

k )T 2
i ]

× [x(k) − x(k − τ ∗
k ) −

k−1∑
l=k−τ ∗

k

z(l)] = 0 (11.15)

and for any Si with appropriate dimensions,

iζT
1 (k)Siζ1(k) −

k−1∑
l=k−τ ∗

k

ζT
1 (k)Siζ1(k) = 0 (11.16)

where ζ1(k) = [xT (k) xT (k − τ ∗
k )]T .

From (11.14), (11.15) and (11.16) we obtain

�Vi (k) ≤ ζT
1 (k)�iζ1(k) − 1

λ

k−1∑
l=k−τ ∗

k

ζT
2 (k, l)�iζ2(k, l)

where

�i =
(

�11
i + �11

i �12
i + �12

i∗ �22
i + �22

i

)

�11
i = (A − I )T Hi (A − I ),

�12
i = (A − I )T Hi BKi ,

�22
i = (BKi )

T Hi BKi ,

and ζ2(k, l) = [ζT
1 (k), zT (l)]T . If�i < 0 and�i ≥ 0, then we can guarantee that the

system is stable. Furthermore, notice that by Schur complement,�i < 0 is equivalent
to �i < 0. Thus we complete the proof.

The stability result for packet-based deadband control in Theorem 11.1 can be
readily extended to the packet-based control approach since both of themhave similar
closed-loop models, as presented in (11.10a) and (11.10b), respectively.

Corollary 11.1 Given λ ≥ 1 and the feedback gains for the packet-based control
approach K p

i , i ∈ Ω p. The closed-loop system in (11.10a) is stable if there exist

Pi = PT
i > 0, Qi = QT

i > 0, Ri = RT
i > 0, Si =

(
S11i S12i

(S12i )T S22i

)
≥ 0, T 1

i , T
2
i with

appropriate dimensions such that
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1. ∀i ∈ Ω p,

�
p
i =

⎛
⎝�11

i �12p

i (A − I )T Hi

∗ �22
i (BK p

i )T Hi

∗ ∗ −Hi

⎞
⎠ < 0 (11.17)

�
p
i = �i ≥ 0 (11.18)

2. ∀i, j ∈ Ω p,

Pi ≤ λPj , Qi ≤ λQ j , Ri ≤ λR j (11.19)

where �11
i , �22

i , Hi and �i are defined in Theorem 11.1 and

�12p

i = λPi BK
p
i − T 1

i + (T 2
i )T + i S12i .

From Theorem 11.1 and Corollary 11.1 it is readily to obtain the following rela-
tionship of the closed-loop stability conditions between packet-based control and
packet-based deadband control for NCSs.

Corollary 11.2 If K p
i = Ki , i ∈ Ω p and the stability conditions in Theorem 11.1

for the closed-loop system in (11.10b) using the packet-based deadband control
approach are satisfied, then the closed-loop system in (11.10a) using the packet-
based control approach is stable.

Consider the closed-loop system description in (11.10c) from the robust control

perspective and let �BkKτ ∗
k

= δB K̄ p · �Bk Kτ∗
k

δB K̄ p where K̄ p = max{||K p
i || |i ∈ Ω p}.

It is readily seen that ||�Bk Kτ∗
k

δB K̄ p || ≤ 1. The comparison of the stability conditions
between packet-based control and packet-based deadband control for NCSs can then
be revealed from the following theorem.

Theorem 11.2 Given λ ≥ 1 and the feedback gains for the packet-based control
approach K p

i , i ∈ Ω p. The closed-loop system with the packet-based deadband
control approach in (11.10c) is stable if there exist Pi = PT

i > 0, Qi = QT
i > 0,

Ri = RT
i > 0, Si =

(
S11i S12i

(S12i )T S22i

)
≥ 0, T 1

i , T
2
i with appropriate dimensions and a

scalar γ > 0 such that

1. ∀i ∈ Ω p,

(
�

p
i ϒT

i∗ −γ I

)
< 0 (11.20)

�
p
i ≥ 0 (11.21)
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2. ∀i, j ∈ Ω p,

Pi ≤ λPj , Qi ≤ λQ j , Ri ≤ λR j (11.22)

where �
p
i and �

p
i are defined in Corollary 11.1 and ϒi = [λδB K̄ p 0 δB K̄ pHi ].

Proof The theorem can be obtained following a standard robust stability analysis
for systems with time-varying uncertainty, as done in [117], and thus we omit the
technical details.

Remark 11.1 Suppose K p
i = Ki , i ∈ Ω p. With the use of the deadband control

strategy in (11.6) we have δ 
= 0. In this case it is readily seen that (11.20) in
Theorem 11.2 is harder to be satisfied than (11.11) in Corollary 11.1, that is, the
system with the deadband control strategy is more likely to be unstable than the
system without it, which is true in reality. On the other hand, if δ = 0, that is,
no deadband control strategy is used, we have �Bk ≡ 0 and thus the closed-loop
systemmodel in (11.10c) is equivalent to (11.10a). In this case, it is seen thatϒi = 0
in Theorem 11.2 and then (11.20) is equivalent to (11.11), thus enabling Theorem
11.2 and Corollary 11.1 to be equivalent. From this point of view, Theorem 11.2
effectively presents the effects of the deadband control strategy on the closed-loop
stability of the system considered.

Based on Theorem 11.1, we obtain the following stabilized controller design
method.

Theorem 11.3 Given λ ≥ 1. The system in (11.10b) is stabilizable if there exist

Li = LT
i > 0, Wi = WT

i > 0, Mi = MT
i > 0, Xi =

(
X11
i X12

i
(X12

i )T X22
i

)
≥ 0, Y 1

i , Y
2
i ,

Vi with appropriate dimensions such that

1. ∀i ∈ Ω ,

�′
i =

⎛
⎜⎜⎝

�11′
i �12′

i λL(A − I )T τ̄ L(A − I )T

∗ �22′
i λ(BVi )

T τ̄ (BVi )
T

∗ ∗ −λLi 0
∗ ∗ ∗ −τ̄Mi

⎞
⎟⎟⎠ < 0 (11.23)

� ′
i =

⎛
⎝λX11

i λX12
i λY 1

i∗ λX22
i λY 2

i

∗ ∗ Li M
−1
i Li

⎞
⎠ ≥ 0 (11.24)

2. ∀i, j ∈ Ω ,

Li ≤ λL j , Mi ≤ λMj ,Wi ≤ λWj (11.25)
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where

�11′
i = (λ − 1)Li + Wi + 2λ(A − I )Li + Y 1

i + (Y 1
i )T + i X11

i ,

�12′
i = λBVi − Y 1

i + (Y 2
i )T + i X12

i ,

�22′
i = −Y 2

i − (Y 2
i )T + i X22

i .

Furthermore, the control law is defined in (11.9b) with Ki = Vi L
−1
i .

Proof Stability condition (11.11) in Theorem 11.1 can be reformed as

⎛
⎜⎜⎝

�11
i �12

i λ(A − I )T Pi τ̄ (A − I )T Ri

∗ �22
i λ(BKi )

T Pi τ̄ (BKi )
T Ri

∗ ∗ −λPi 0
∗ ∗ ∗ −τ̄ Ri

⎞
⎟⎟⎠ < 0 (11.26)

Pre- and Post multiply (11.26) and (11.12) by diag(P−1
i , P−1

i , P−1
i , R−1

i ) and
diag(P−1

i , P−1
i , P−1

i ), respectively, and let Li = P−1
i , Mi = R−1

i , Wi = P−1
i

Qi P
−1
i , Xi = diag(P−1

i , P−1
i ) · Si · diag(P−1

i , P−1
i ), Y j

i = P−1
i T j

i P
−1
i , j = 1, 2,

Vi = Ki P
−1
i . We then complete the proof.

It is noticed that (11.24) in Theorem 11.3 is no longer LMI conditions due to the
term Li M

−1
i Li . There are several techniques available to deal with this difficulty,

among which the cone complementarity linearization technique is one of the most
commonly used [135]. In the following corollary, this technique is used to derive
a suboptimal solution for (11.24) by transforming it to a nonlinear minimization
problem involving LMI conditions.

Corollary 11.3 Given λ ≥ 1. Define the following nonlinear minimization problem
involving LMI conditions for i ∈ Ω ,

Pi :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Minimize Tr(Zi Ri + Li Pi + Mi Qi )

Subject to (11.23), (11.25), Li = LT
i > 0,Wi = WT

i > 0,

Mi = MT
i > 0, Xi =

(
X11
i X12

i
(X12

i )T X22
i

)
≥ 0,

�
′′
i ≥ 0,	1

i ≥ 0,	2
i ≥ 0,	3

i ≥ 0,	4
i ≥ 0.

(11.27)

where

�
′′
i =

⎛
⎝λX11

i λX12
i λY 1

i∗ λX22
i λY 2

i∗ ∗ Zi

⎞
⎠ ,
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	1
i =

(
Ri Pi
∗ Qi

)
,	2

i =
(
Zi I
∗ Ri

)
,

	3
i =

(
Li I
∗ Pi

)
,	4

i =
(
Mi I
∗ Qi

)
.

If the solution of Pi = 3n,∀i ∈ Ω , the system in (11.10b) is then stabilizable
with the control law being defined in Theorem 11.3.

Remark 11.2 In this chapterLMI-based stability and stabilization results are obtained
which are feasible in practice (Corollary 11.3) and will be proven to be effective by
both numerical and experimental examples in the next section. However, it is worth
mentioning that as a control framework, the performance of the packet-based dead-
band control approach to NCSs can certainly be investigated by any appropriate
control theories and the controller can be designed according to the closed-loop sys-
tem models in (11.10b) and (11.10c), independently from the deployment of the
packet-based deadband control strategy. In this sense further theoretical analysis
and improvement are still needed, in order to reduce the conservativeness of the
LMI-based results presented in this chapter.

11.3 Numerical and Experimental Examples

In this section, both numerical and experimental examples are considered to illustrate
the effectiveness of the proposed packet-based deadband control approach to NCSs
and the stabilized controller design method within this framework.

Example 11.1 Consider the system in (11.1) with the following system matrices as
seen in Example 2.1, which is seen to be open-loop unstable,

A =
(
0.98 0.1
0 1

)
, B =

(
0.04
0.1

)
.

In the simulation, the initial state for the system in (11.1) is set as x0 = [−1 1]T ,
the upper bound of the delay and consecutive dropout for the round trip is τ̄ = 4 and
the deadband for the packet-based deadband approach is chosen as δ = 0.1.

In this example, our main purpose is to illustrate the effectiveness of the proposed
deadband control strategy within the packet-based control framework, by comparing
it with the standard packet-based control approach in Chap.2. In order to eliminate
possible effects on the system performance brought by different controller design
methods, in this example the controllers for both cases are designed using the same
receding horizon approach as in Chap. 2, which yields the following feedback gain
for the packet-based control approach,
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K p =
⎛
⎝ K p

2
K p

3
K p

4

⎞
⎠ =

⎛
⎝−0.6438 −1.4748

−0.5242 −1.3079
−0.4198 −1.1549

⎞
⎠

and the feedback gain for the packet-based deadband control approach with N = 9,

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K2

K3

K4

K5

K6

K7

K8

K9

K10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.4371 −1.0510
−0.3428 −0.9334
−0.2615 −0.8251
−0.1921 −0.7257
−0.1334 −0.6346
−0.0843 −0.5515
−0.0439 −0.4759
−0.0114 −0.4074
0.0142 −0.3454

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where both of the feedback gains K p
i and Ki are designed from i = 2 due to the fact

that the round trip delays in both cases are not less than 2 sampling periods, as stated
in (11.7a).

It is seen from the comparison of the state responses in Fig. 11.2 that the system
performance with the deadband control strategy is still maintained at a satisfactory
level. This can also be verified by looking into the comparison of the control inputs
for both cases shown in Fig. 11.3 where it is seen that the control inputs to both
systems are very close. It is worth mentioning, however, only around 60% of FCSs
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Fig. 11.2 Example 11.1. Comparison of the state responses betweenwith andwithout the deadband
control strategy
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Fig. 11.3 Example 11.1. Comparison of the control inputs between with and without the deadband
control strategy
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Fig. 11.4 Example 11.1. Comparison of the state responses with heavy transmission load

are sent to the actuator using the deadband control strategy. The effectiveness of the
packet-based deadband control approach can also been seen from Fig.11.4, where
the packet-based deadband control approach yields a far better system performance
than the packet-based control approach, when the latter also transmit only around
60% of its FCSs.
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Example 11.2 The Internet-based test rig for NCSs as discussed in Chap.2 is used to
illustrate the effectiveness of the proposed packet-based deadband control approach
and the stabilized controller design method.

In the experiment, the round trip delay between UK and China is found to be
typically upper bounded by 0.32 s which is 8 sampling periods. For the implementa-
tion of the packet-based deadband control approach, an FCS containing 20 forward
control signals is used, with the feedback gains being the following, designed using
Corollary 11.3,

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K2

K3

K4

K5

K6

K7

K8

K9

K10

K11

K12

K13

K14

K15

K16

K17

K18

K19

K20

K21

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.0643 0.0039 0.0249
−0.0589 0.0035 0.0221
−0.0547 0.0032 0.0202
−0.0527 0.0030 0.0191
−0.0495 0.0025 0.0180
−0.0494 0.0029 0.0177
−0.0485 0.0032 0.0175
−0.0466 0.0027 0.0168
−0.0458 0.0029 0.0165
−0.0460 0.0027 0.0164
−0.0459 0.0030 0.0164
−0.0456 0.0031 0.0164
−0.0445 0.0026 0.0158
−0.0440 0.0024 0.0154
−0.0439 0.0025 0.0153
−0.0437 0.0025 0.0152
−0.0429 0.0022 0.0149
−0.0430 0.0023 0.0149
−0.0434 0.0026 0.0150
−0.0437 0.0028 0.0151

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Using a deadband of δ = 0.14, it is seen from Fig. 11.5 that only around 25% of
the FCSs are sent to the actuator. In other words, the deadband control strategy used
here reduces around 75% of the control data transmissions.

On the other hand, with the feedback gains defined above and the packet-based
deadband control approach in Sect. 11.1, the output response of the DC servo system
which is remotely controlled via the Internet is illustrated in Fig. 11.6. The results
show that the output responses converge quickly which proves the effectiveness of
both the packet-based deadband control approach and stabilized controller design
method.

ybzhao@zjut.edu.cn

http://dx.doi.org/10.1007/978-981-10-6250-6_2


11.3 Numerical and Experimental Examples 159

0 20 40 60 80 100 120 140 160 180
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (k)

F
lu

ct
ua

tio
ns

 o
f F

C
S

s

δ
k

δ

Fig. 11.5 Example11.2. Using deadband to reduce data transmissions in NCSs
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Fig. 11.6 Example 11.2. Experimental response using the packet-based deadband control approach
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11.4 Summary

Within the packet-based control framework for NCSs, a packet-based deadband con-
trol approach is proposed, with also a stabilized controller design method obtained
using time delay switched system theory. This approach exploits more fully of the
packet structure in the network being used in NCSs, by sending a larger forward con-
trol sequence and then setting a deadbandon the sequenceswhich allows transmission
only in the presence of a sufficiently large change between the current sequence and
the one last sent. As a modified packet-based control approach to NCSs, this work
expands the application of the approach when the reduction of the communication
resources is necessary.
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Chapter 12
Packet-Based Control and Scheduling
Co-Design for Networked Control Systems

Different fromprevious chapterswhere only oneNCSoccupies the network resource,
in this chapter the design and analysis of the system settingwhere a set of linear NCSs
(i.e., subsystems) share the limited network resources is considered. In this system
setting, the packet-based control approach is applied to each subsystem and two
scheduling algorithms, the existing static Rate Monotonic (RM) algorithm and a
newly proposed Dynamic Feedback Scheduling (DFS) algorithm, are considered to
schedule the network resource allocations among those subsystems, to achieve the
objective that all the subsystems are stable under the limited network resources.

This chapter is organized as follows. The problem being studied is first described
in Sect. 12.1, and then the packet-based controller for each subsystem is obtained
in Sect. 12.2, from which an important definition for the subsystems is derived
which is the supremum of round trip delay under which the stability of the sub-
systems is guaranteed. With this definition, two scheduling algorithms are presented
in Sect. 12.3, and a numerical example is presented in Sect. 12.4. Section12.5 con-
cludes the chapter.

12.1 Problem Statement

A set of N continuous-time LTI systems (Sc
i )1≤i≤N are considered which share the

network resource as shown in Fig. 12.1,

S i
c :

{
ẋci (t) = Ac

i x
c
i (t) + Bc

i u
c
i (t) (12.1a)

yci (t) = Cc
i x

c
i (t) (12.1b)

where xci (t) ∈ R
ni , uci (t) ∈ R

mi , and yci (t) ∈ R
ri .

In a digital control environment, a discrete-time representation S i
d of system S i

c
is obtained using a sampling period Ti,
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System 1 System N

Plant Controller

Shared Network

ControllerPlant

Fig. 12.1 Multiple networked control systems share the communication channel

S i
d :

{
xi(k + 1) = Aixi(k) + Biui(k) (12.2a)

yi(k) = Cixi(k) (12.2b)

where xi(k) = xci (kTi), ui(k) = uci (kTi), yi(k) = yci (kTi), Ai = eA
c
i Ti , and Bi =∫ Ti

0 eA
c
i sdsBc

i .
Suppose that the backward channel delays of all the subsystems are random but

bounded and the transmissions from the controllers to the actuators share a commu-
nication network with limited resource. The communication resource is limited in
the sense that, at each time instant, only one controller can access the network for
transmission. Therefore the forward channel delay for each subsystem depends on
not only the time during which the data is transmitted over the network but the time
taken for waiting for the permission of network access which is determined by the
used scheduling algorithm, see Fig. 12.1.

Thus the problem here is not only to design a controller for each subsystem S i
d

but also to design the scheduling scheme for the network resource allocations for all
the subsystems (S i

d)1≤i≤N , in an environment of network-induced delay, data packet
dropout and data packet disorder. To this end, a co-design approach is proposed with
the integration of the packet-based control approach and the scheduling algorithm. In
the following section, the packet-based controller for each subsystem is first deter-
mined, and two different scheduling algorithms, the existing static RM algorithm
and a novel DFS algorithm, are then adopted to schedule the transmissions of FCSs,
with the guarantee of the stability of all the subsystems.

12.2 Packet-Based Control for Subsystems

For each subsystem (S i
d)1≤i≤N , exactly the same packet-based control approach

proposed in Sect. 2.2 is applied, with the following objective function,
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Jik,τsc,k =
Ni
2∑

j=Ni
1

qj(ŷ
i(k + j|k − τsc,k) − ω(k + j))2 +

Ni
u∑

j=1

rj�u2(k + j − 1) (12.3)

where the definitions of the parameters are referred to (3.6).
Following the same procedure as in Sect. 3.2.1.2, FCIS for system S i

d is then
obtained as

�U (k|k − τsc,k) = Mτsc,k (�k − Eτsc,k x̄(k − τsc,k))

where�U (k|k−τsc,k),Mτsc,k ,�k andEτsc,k can be similarly defined as in Sect. 3.2.1.2.
With this FCIS, the following FCS from k to k + Nu − 1 is readily obtained as

U (k|k − τsc,k) = Gu(k − τsc,k − 1) + H�U (k|k − τsc,k) (12.4)

where G = [Im · · · Im]TmNu×m, Im is the identity matrix with rank m and

H =

⎛
⎜⎜⎜⎝
Im · · · Im 0 · · · 0
Im · · · Im Im · · · 0
... · · · ...

...
. . .

...

Im · · · Im Im · · · Im

⎞
⎟⎟⎟⎠

mNu×m(Nu+τsc,k)

.

Thus, for each subsystem with the packet-based control approach and the afore-
mentioned FCS, following the same procedure as in Sect. 2.3.1, a stability theory
similar to Theorem 2.1 can then be obtained using switched system theory.

We now explore a little further on Theorem 2.1. As a matter of fact, Theorem 2.1
implies that system S i

d with the packet-based control approach and the aforemen-
tioned FCS in (12.4), is stable under certain conditions if the round trip delay is less
than a fixed value. In other words, given a linear system, the least upper bound, or the
supremum of the round trip delay, under which the system is stable can be found from
Theorem 2.1. We call this supremum of round trip delay that guarantees the stability
of the system the “Stability-guaranteed Supremum of Round Trip Delay (SSRTD)”,
which is an inherent characteristic of a given system. The techniques such as the
LMI tool-box, are useful to find the SSRTD for a given system. It is also necessary
to point out that if other performance constraints besides stability are considered,
a smaller supremum of round trip delay than SSRTD is needed. For convenience,
denote the SSRTDs of the systems (S i

d)1≤i≤N by D̂i > 0, 1 ≤ i ≤ N .

Remark 12.1 Note that the notionofSSRTDhere is similar toMADB(seeSect. 1.3.1)
which has been used in a number of publications, see spsciteKim2003 for an
overview. We prefer SSRTD to MADB in this thesis since the former can better
express the particular requirement of the round trip delay in Theorem 2.1 for the
stability of the system.
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12.3 Scheduling

In this section, scheduling theory is applied to allocate the limited network resources
for the transmission tasks of the PBNCSs that are derived from the subsystems
(S i

d)1≤i≤N . The static, priority-based scheduling algorithm RM is applied to the set
of subsystems under a private network environment first, and then the dynamic,
feedback-based scheduling algorithm DFS is presented to extend the application to
the public network.

When a scheduling algorithm is applied to schedule the transmission tasks of a
set of PBNCSs, stability of the subsystems have to be guaranteed as a precondition.
To ensure this, we define “Stable Schedulability” as follows.

Definition 12.1 (Stable Schedulability). A set of PBNCSs sharing the network
resources is said to be stable schedulable by a scheduling algorithm if the trans-
missions of all the subsystems can be scheduled so that all the subsystems are stable.

12.3.1 Static Scheduling

In the static scheduling case, the network is assumed tobeusedonlyby the subsystems
(S i

d)1≤i≤N , i.e. is private to the set of subsystems. In the analysis, the transmissions of
the FCSs for the subsystem (S i

d)1≤i≤N are regarded as real-time tasks in scheduling
theory, which are defined by analyzing the formation of the network-induced delay.
The RM algorithm is then adopted over these transmission tasks and the feasibility
theorem is obtained as well.

12.3.1.1 The Transmission Tasks of the PBNCSs

As shown in spsciteLian2001b, the forward channel delay τca is mainly composed
of the following three parts.

1. The propagation delay, which is the time from when a packet is put onto the
network till it successfully arrives at its destination. Since the network is private
to the subsystems (S i

d)1≤i≤N , the propagation delay depends merely on the speed
of signal transmission and the distance between the source and the destination,
which are assumed to be fixed for all the subsystems. Therefore this delay is
assumed to be known as a constant τ 0

ca in the static scheduling case.
2. The frame time delay, which is the time for the source to place a packet on the

network. Suppose that the size of the packet which contains the FCS is BcNu,
where Bc is data size required for encoding a single step control signal as defined
in Assumption 2.2, which can be assumed to be the same for all the subsystems.
The frame time delay is then obtained as
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ei = BcNi
u

BN
(12.5)

where BN is the bandwidth of the network, Ni
u is the control horizon of subsystem

S i
d .

It is natural to assume that all the subsystems use the same control horizon Nu,
since the selection of Nu mainly depends on the round trip delay of the network
and all the subsystems endure similar network-induced delays and data packet
dropouts by sharing the network. Hence,

ei = e = BcNu

BN
, i = 1, 2, ...,N (12.6)

The frame network-induced delay e serves as the execution time in the transmis-
sion tasks of the PBNCSs.

3. The waiting network-induced delay, is defined as the time a FCS has to wait
for queuing and network availability before actually being sent. From earlier
discussion, the SSRTD for system S i

d is D̂i, therefore, to ensure the stability of
all the subsystems, the waiting delay for each system should not be larger than

Di = D̂i − τ 0
ca − τ̄sc − e (12.7)

Note that the upper bound of the backward channel delay τ̄sc is used since the
RM algorithm assigns the priority of each task statically and the stability of the
subsystems needs to be guaranteed under the worst case. It is only the stability of
the system that we care about in the RM algorithm in this chapter, and therefore
the transmission period of subsystem S i

d needs to be no longer than Di. As a
result, the transmission period hi of subsystem S i

d is assumed to be equal to Di in
the static RM scheduling algorithm, i.e.

hi = Di, i = 1, 2, ...,N (12.8)

hi is chosen by (12.8) so that the FCS of subsystem S i
d is sent every hi seconds no

matter what the sampling period is or how fast the controller can generate FCSs.

Thus from the analysis of τca, the transmission tasks of the set of PBNCSs can now
be described as follows: All the tasks have the same execution time e, the deadline of
each task equals its period hi, and the first release time ϑi of task i is the time when
subsystem S i

d first operates. We denote the tasks by

Ti = T (ϑi, e, hi), i = 1, 2, · · · ,N (12.9)
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12.3.1.2 Scheduling of PBNCSs by RM

RM is a widely used scheduling algorithm, where tasks with shorter periods have
higher priorities. It is a fixed-priority assignment: priorities are assigned to tasks
before execution and do not change over time. spsciteLiu1973 have shown that RM
is superior to other fixed-priority assignments in the sense that no other fixed-priority
algorithm can schedule a task set that cannot be scheduled by RM.

Consider the set of real-time transmission tasks Ti, 1 ≤ i ≤ N defined in (12.9).
These tasks are periodic, independent, non-preemptive, and the period of each task
equals its deadline. These characteristics are just what the operation of the RM
algorithm needs. Therefore, the RM scheduling algorithm can be applied to schedule
the set of transmission tasks in PBNCSs, by which the transmission with shorter
deadlines (or periods) are assigned higher priorities, and thus the corresponding
FCSs can be transmitted first if the network is idle, i.e.

if hi < hj, then ϒi > ϒj, i, j = 1, 2, · · · ,N (12.10)

where ϒi represents the priority of the transmission task of subsystem S i
d .

Theorem 12.1 A set of N PBNCSs sharing the network resource in their forward
channel (indexed by the increasing order of their transmission periods, i.e. hi ≤
hi+1, i = 1, 2, ...N − 1) are stable schedulable if for all i = 1, ...,N

U (i) ≤ f (i) (12.11)

where f (i) = i(21/i − 1) and

U (i) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e(
i∑

j=1

1

hj
+ 1

hi
) i = 1, 2, ...,N − 1 (12.12a)

e(
i∑

j=1

1

hj
) i = N (12.12b)

Proof From Theorem 16 in [153], a set of nonpreemptive periodic real-time tasks
are schedulable if

e1
h1

+ e2
h2

+ · · · + ei
hi

+ b̄l,i
hi

≤ i(21/i − 1) (12.13)

where ei is the frame time, hi is the transmission period, each for the ith task, and
b̄l,i is task i’s worst-case blocking time by the lower priority tasks, i.e.,

b̄l,i = max
j=i+1,...,N

ej. (12.14)
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As has been pointed out earlier, for the transmission tasks Ti, 1 ≤ i ≤ N , (12.6)
holds, and therefore b̄l,i = e, i = 1, 2, ...,N − 1 and b̄l,N = 0 from (12.14). Hence
the theorem holds.

Corollary 12.1 If 1) hi+1 ≤ 2hi, i = 1, 2, ...N − 2, and 2) hN
hN−1

≤ N−1
N

2
1

N−1 −1

2
1
N −1

,

then the set of tasks of PBNCSs is stable schedulable if

e
N∑
i=1

1

hi
≤ N (21/N − 1) (12.15)

Proof From 1) we obtain for i = 1, 2, ...,N − 2 that

U (i + 1) − U (i) = e(
2

hi+1
− 1

hi
) ≥ 0

It is obvious that U (N ) ≥ U (N − 1) from 2). Thus we obtain

U (N ) = max
1≤i≤N

U (i)

On the other hand, it is easy to show that function f (·) is nonincreasing, and
thereforeU (N ) ≤ f (N ) impliesU (i) ≤ f (i), i = 1, 2, ...,N −1, which completes
the proof by Theorem 12.1.

Corollary 12.2 If the transmission periods of all the subsystems are the same, i.e.,
hi = h, i = 1, 2, ...,N , then (Sd

i )1≤i≤N are stable schedulable if

e

h
≤ 2

1
N − 1 (12.16)

Proof It can be obtained directly from Corollary 12.1.

12.3.2 Dynamic Feedback Scheduling

In the static RM scheduling scheme presented earlier, the transmission periods hi for
all the subsystems are assigned a priori to ensure the stability of the subsystems and
do not change any more. In the case of the network being shared only by (S i

d)1≤i≤N ,
this method works though the performance of the subsystems may not be optimum
because the network is not fully used. However, if the network is not private to these
subsystems, i.e., there are other components occupying the network, it can not be
assumed that the propagation delay is constant due to the change of the network
loads. Based on this reality, DFS scheme is designed. In this scheme, a higher level
feedback scheduler is proposed, which gets the information of the network utilization
from the network and the control performances from all the subsystems as well, and
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Fig. 12.2 Dynamic feedback scheduling of multiple systems

then regularly calculates and reassigns the transmission period for each subsystem.
During the interval of two successive reassignments of periods, the RM algorithm
still works. The framework of the DFS scheme is depicted in Fig. 12.2.

In order to implement DFS, such issues as the selection of the period of DFS,
the measurement of the network utilization and the reassignment of the transmission
periods of the PBNCSs, need to be dealt with first.

12.3.2.1 The Period of DFS

This period, noted by TDFS , has to be chosen carefully. Generally, its value depends
on the speed at which the condition of the network changes. A small TDFS is needed
if the network condition changes rapidly, while a larger one can still guarantee the
performance of the system without overloading the network if the parameters of
the network do not change much over a long time. However, in any case, TDFS
should be always not less than the transmission periods of all the subsystems, i.e.
TDFS ≥ maxNi=1 hi.

12.3.2.2 The Measurement of the Network Utilization

To obtain the utilization information of the network, a packet containing this infor-
mation is sent to the feedback scheduler using the period of TDFS . This information
is mainly reflected by the propagation delays of the subsystems. The propagation
time will increase to a certain extent with the increase of the network load. Another
factor affecting the stability of the subsystems is the change of the backward channel
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delay. In order to take this factor into account and for simplicity, we assume that the
upper bound of the backward channel delay during the kth period of DFS (denoted
by τ̄ i

sc(k) for subsystem S i
d) can be obtained from the network and the network does

not change too much during this period thus enabling us to use τ̄ i
sc(k) to estimate its

value during the (k + 1)th period. Then the deadline hi of the task Ti will be recal-
culated by updating the propagation time τ o

ca and the upper bound of the backward
channel delay every TDFS seconds as follows

Di(k + 1) = D̂i − μ(τ 0
ca(k) + τ̄ i

sc(k)) − e (12.17)

where μ close to 1 is a smoothing factor satisfying

μ(τ 0
ca(k) + τ̄ i

sc(k)) ≥ τ 0
ca(k + 1) + τ̄ i

sc(k + 1),∀k

12.3.2.3 The Reassignment of the Transmission Periods for All
Subsystems

In order to obtain the control performance of the subsystems, an obvious idea is to
use the predictive Quality of Performance (QoP) during the next DFS period. This
QoP during the kth period of DFS can be defined for subsystem S i

d as

P̂i(k) =
�(k+1)TDFS/hi�∑
j=�kTDFS/hi�

(ŷi(j|j − τsc,j) − ωi(j))
2 (12.18)

The calculation of the new transmission periods for all the subsystems can then
be modeled as an optimization problem P as follows:

P :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Select hi, i = 1, 2, ...N , s.t.

min
hi

N∑
i=1

P̂i,

subject to
U (i) ≤ f (i), i = 1, 2, ...,N ,

hi ≥ Ti, i = 1, 2, ...,N .

where U (i) and f (i) are defined in Theorem 12.1 and Ti is the sampling period for
system S i

d defined in (12.2).
In practice, the predictive outputs ŷ(j|j − τsc,j) of the subsystems can be obtained

using the open-loop prediction, whereas the online operation of the optimization
problem P is not a simple one. Therefore, not the predictive QoP but the previous
QoP, J̄i(k), i for subsystem S i

d and k for the kth period of DFS, is used to represent the
performance of the system, which is defined as follows and can be easily obtained,
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J̄ ik,τsc,k =
∑

Jik,τsc,k ∈�k

Jik,τsc,k (12.19)

where Jik,τsc,k is the objective function of subsystem S i
d defined in (12.3),�k is the set

of objective functions during the kth period of DFS, or from the �(k − 1)TDFS/hi�th
transmission period of subsystem S i

d to the �kTDFS/hi�th.
Let the new transmission periods chosen in this way be

1

hi(k + 1)
= κ(k + 1)

J̄ ik,τsc,k∑N
j=1 J̄

j
k,τsc,k

= κ(k + 1)θi(k) (12.20)

where κ is a proportion factor and can be chosen as follows to include the constraints
of stable schedulability in Theorem 12.1,

κ(k + 1) = max
i=1,...,N−1

{ f (i)

e(
∑i

j=1 θj(k) + θi(k))
,
f (N )

e
}

Considering the fact that the network loadmaychangegreatly between twoperiods
of DFS, a smoothing factor ρ(0 < ρ ≤ 1) is introduced to avoid network overload.
Also taking account of the fact that the transmission period hi can never exceed Di

for the stability of the system, then the transmission periods are obtained as

hi(k + 1) = min{ ρ

κ(k + 1)θi(k)
,Di(k + 1)} (12.21)

The algorithm of DFS can then be summarized as follows.

Algorithm 12.1 Dynamic feedback scheduling

Initialization. TDFS, k = 1, t = 0, hi = D̂i − e, 1 ≤ i ≤ N .
while t ∈ [(k − 1)TDFS kTDFS] do
Calculate the FCSs Ui(k|k − τsc,k), 1 ≤ i ≤ N using (12.4) for all the subsystems;
Apply RM algorithm in Sect. 12.3.1 to determine the order of the transmission tasks of the
PBNCSs;
Transmit the FCS.

end while
if t = kTDFS and the network is in full use then
Let k = k + 1

else
The DFS module calculates the new transmission periods using (12.20) and reassigns the pri-
orities for all the subsystems;
Let k = k + 1.

end if
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12.3.2.4 Stability of DFS

Theorem 12.2 (Sc
i )1≤i≤N with the packet-based control approach are stable under

DFS if the transmission tasks of the PBNCSs are always stable schedulable.

Proof It is noticed that the use of DFS to the set of PBNCSs does not change the
backward channel delay, since the DFS module is at the controller side, while it does
change the forward channel delay by reassigning the transmission period hi, i =
1, 2, · · · ,N for the subsystems. However, from (12.17) and (12.21), we obtain

hi(k + 1) ≤ Di(k + 1) ≤ D̂i − τ 0
ca(k + 1) − τ̄ i

sc(k + 1) − e, ∀k, i = 1, 2, · · · ,N
(12.22)

which implies,

sup
k

{hi(k) + τ 0
ca(k) + τ̄ i

sc(k) + e} ≤ D̂i, i = 1, 2, · · · ,N (12.23)

Note that the left side of (12.23) is the effective maximum of round trip delay for
subsystem S i

d , which is always no more than SSRTD. Thus the theorem is valid by
Theorem 12.1.

12.4 Numerical Examples

Three second order linear subsystems in (Sc
i )1≤i≤N are considered in the examples,

whose system matrices are as follows

Ac
1 =

( −11.1572 −106.0132
−110.3637 −5.2680

)
,Ac

2 =
( −23.7783 −48.9313

−107.2959 −34.0550

)
,

Ac
3 =

(−91.6291 −160.9438
−69.3147 −35.6675

)
,Bc

1 =
(−0.1295

2.6890

)
,Bc

2 =
(
4.3801
2.3278

)
,

Bc
3 =

(
9.1471
4.0444

)
,Cc

1 = Cc
2 = Cc

3 = 1,
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The sampling periods are set as T1 = 0.02 s, T2 = 0.015 s, T3 = 0.01 s, respec-
tively. The corresponding discrete-time subsystems (Sd

i )1≤i≤N can then be obtained
with the following system matrices

A1 =
(

0.8 0.12
0.11 0.9

)
,A2 =

(
0.7 0.48
0.2 0.6

)
,A3 =

(
0.4 0.2
0.5 0.7

)
,

B1 =
(
0.02
0.05

)
,B2 =

(
0.08
0.06

)
,B3 =

(
0.08
0.1

)
,

C1 = C2 = C3 = 1.

For the simplicity of simulation, assume for all the three subsystems that the set
point ω = 0, weighting factorsW1 = I ,W2 = I , and the state vector can be obtained
directly. Other parameters of the simulation are shown in Table12.1. A Gaussian
white noise with standard deviation 0.1 is also introduced as the disturbance of the
state (Tables12.1 and 12.2).

Example 12.1 (RM algorithm)
Using the LMI toolbox in Matlab, the SSRTD D̂i for the subsystem (Sd

i )1≤i≤N
can be obtained by Theorem 2.1, thus enabling the transmission periods hi to be
calculated according to (12.7) and (12.8), as shown in Table2.

Note that the execution time of each job is e = 0.008 s. The value of the utilization
function U (·) can then be obtained as U (i) = 0.2, 0.3133, 0.34, i = 1, 2, 3 while
f (i) = 1, 0.8284, 0.7798, i = 1, 2, 3 respectively. It is readily seen that in this case
(12.11) holds and by Theorem 12.1, the set of NCSs is stable schedulable under RM.

Table 12.1 Simulation parameters

System 1 System 2 System 3

T 0.02 0.015 0.01

ϑ 0 0.05 0.06

x0 [−1 − 1]T [−1 − 1]T [−1 − 1]T
P1 [1 30 20 0 I I]
P2 [0.008 0.002 0.01 10]

T is the sampling period.

ϑ is the first release time.

x0 = [x01 x02]T is the initial state.

P1 = [N1 N2 Nu ω W1 W2] is the predictive parameters

P2 = [e τ0ca τ̄sc Tsim], Tsim is the simulation time.
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Table 12.2 SSRTD and Transmission periods

System 1 System 2 System 3

D̂i 5 7 8

hi 4 5 6
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Fig. 12.3 Example 12.1. State evolution using RM algorithm. Only the first state is illustrated

The state evolution of the first state of the three subsystems under RM is shown
in Fig. 12.3.

Example 12.2 (DFS algorithm)
It is noted that the SSRTD obtained in Theorem 2.1 is conservative. In the simu-

lation of DFS, the deadlines of the three subsystems are set to be 8, 10 and 12 steps
respectively, and the propagation delays of the subsystems in the forward channel
are set to be randomly changing under the constraint that the real round trip delay
are no more than the new SSRTD, in order to simulate the changes of the network
loads. All the other parameters remain the same as in RM algorithm.

The simulation result (Fig. 12.4) shows that the subsystems are still stable under
this larger SSRTD and with fluctuating propagation delays.
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Fig. 12.4 Example 12.2. State evolution using DFS algorithm. Only the first state is illustrated

12.5 Summary

Different from the previous chapters where only one NCS occupies the network
resources, in this chapter a situationwheremultipleNCSs share the network resources
to transmit the FCS was considered. The packet-based control approach was still
applied to the subsystems, and scheduling theory was also considered to schedule the
network resources to guarantee the stability of all the subsystems. Two scheduling
algorithms, the existing RM algorithm and a novel designed DFS algorithm were
discussed, the validity of which were also illustrated by numerical examples.
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